1-s2.0-S0960982219306190-main.pdf (5.32 MB)
0/0

Self-organization of minimal anaphase spindle midzone bundles.

Download (5.32 MB)
journal contribution
posted on 09.01.2020 by Jonathon Hannabuss, Manuel Lera-Ramirez, Nicholas I Cade, Franck J Fourniol, François Nédélec, Thomas Surrey
In anaphase spindles, antiparallel microtubules associate to form tight midzone bundles, as required for functional spindle architecture and correct chromosome segregation. Several proteins selectively bind to these overlaps to control cytokinesis. How midzone bundles assemble is poorly understood. Here, using an in vitro reconstitution approach, we demonstrate that minimal midzone bundles can reliably self-organize in solution from dynamic microtubules, the microtubule crosslinker PRC1, and the motor protein KIF4A. The length of the central antiparallel overlaps in these microtubule bundles is similar to that observed in cells and is controlled by the PRC1/KIF4A ratio. Experiments and computer simulations demonstrate that minimal midzone bundle formation results from promoting antiparallel microtubule crosslinking, stopping microtubule plus-end dynamicity, and motor-driven midzone compaction and alignment. The robustness of this process suggests that a similar self-organization mechanism may contribute to the reorganization of the spindle architecture during the metaphase to anaphase transition in cells.

Funding

Crick (Grant ID: 10163, Grant title: Surrey FC001163) European Research Council (Grant ID: 323042 - SPINDLEDESIGN, Grant title: ERC 323042 - SPINDLEDESIGN) European Commission (Grant ID: 675737 - DivIDe, Grant title: EC 675737 - DivIDe)

History

Licence

Exports