The Francis Crick Institute
Browse
s13578-024-01265-x.pdf (7.92 MB)

Rapid reconstitution of ubiquitinated nucleosome using a non-denatured histone octamer ubiquitylation approach.

Download (7.92 MB)
journal contribution
posted on 2024-06-20, 11:52 authored by Weijie Li, Peirong Cao, Pengqi Xu, Fahui Sun, Chi Wang, Jiale Zhang, Shuqi Dong, Jon R Wilson, Difei Xu, Hengxin Fan, Zhenhuan Feng, Xiaofei Zhang, Qingjun Zhu, Yingzhi Fan, Nick Brown, Neil Justin, Steven J Gamblin, He Li, Ying Zhang, Jun He
BACKGROUND: Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS: In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS: Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology.

Funding

Crick (Grant ID: CC2060, Grant title: Gamblin CC2060)

History

Usage metrics

    The Francis Crick Institute

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC