The Francis Crick Institute
Browse

Pyphe, a python toolbox for assessing microbial growth and cell viability in high-throughput colony screens

Download (2.39 MB)
journal contribution
posted on 2020-06-25, 15:14 authored by Stephan Kamrad, María Rodríguez-López, Cristina Cotobal, Clara Correia-Melo, Markus Ralser, Jürg Bähler
Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios.

Funding

Crick (Grant ID: 10134, Grant title: Ralser FC001134) Wellcome Trust (Grant ID: 200829/Z/16/Z, Grant title: WT 200829/Z/16/Z)

History

Usage metrics

    The Francis Crick Institute

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC