The Francis Crick Institute
Browse
- No file added yet -

Protein kinase N1 critically regulates cerebellar development and long-term function

Download (11.18 MB)
journal contribution
posted on 2020-09-07, 11:18 authored by Stephanie zur Nedden, Rafaela Eith, Christoph Schwarzer, Lucia Zanetti, Hartwig Seitter, Friedrich Fresser, Alexandra Koschak, Angus JM Cameron, Peter J Parker, Gottfried Baier, Gabriele Baier-Bitterlich
Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated axonal outgrowth, elevated AKT phosphorylation, and higher levels of neuronal differentiation-2 (NeuroD2), a transcription factor preventing presynaptic maturation. Concomitantly, Pkn1-/- Cgcs had a reduced density of presynaptic sites. By inhibiting AKT with MK-2206 and siRNA-mediated knockdown, we found that AKT hyperactivation is responsible for the elongated axons, higher NeuroD2 levels, and reduced density of presynaptic specifications in Pkn1-/- Cgcs. In line with our in vitro data, Pkn1-/- mice showed AKT hyperactivation, elevated NeuroD2 levels, and reduced expression of PF-PC synaptic markers during stages of PF maturation in vivo. The long-term effect of Pkn1 knockout was further seen in cerebellar atrophy and mild ataxia. In summary, our results demonstrate that PKN1 functions as a developmentally active gatekeeper of AKT activity, thereby fine-tuning axonal outgrowth and presynaptic differentiation of Cgcs and subsequently the correct PF-PC synapse formation.

History