posted on 2021-08-17, 12:36authored byKarine Rizzoti, Robin Lovell-Badge
Along with the sub-ventricular zone of the forebrain lateral ventricles and the sub-granular zone of the dentate gyrus in the hippocampus, the hypothalamus has recently emerged as a third gliogenic and neurogenic niche in the central nervous system. The hypothalamus is the main regulator of body homeostasis because it centralizes peripheral information to regulate crucial physiological functions through the pituitary gland and the autonomic nervous system. Its ability to sense signals originating outside the brain relies on its exposure to blood-born molecules through the median eminence, which is localized outside the blood brain barrier. Within the hypothalamus, a population of specialized radial glial cells, the tanycytes, control exposure to blood-born signals by acting both as sensors and regulators of the hypothalamic input and output. In addition, lineage-tracing experiments have recently revealed that tanycytes represent a population of hypothalamic stem cells, defining them as a pivotal cell type within the hypothalamus. Hypothalamic neurogenesis has moreover been shown to have an important role in feeding control and energy metabolism, which challenges previous knowledge and offers new therapeutic options.