elife-08438-v2.pdf (2.52 MB)
Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock
journal contribution
posted on 2020-10-15, 08:35 authored by Alexis B Webb, Iván M Lengyel, David J Jörg, Guillaume Valentin, Frank Jülicher, Luis G Morelli, Andrew C OatesIn vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a "segmentation clock". This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics.
History
Publisher DOI
Usage metrics
Categories
Keywords
biological clockcomputational biologydevelopmental biologygene expression noiseoscillatorsomitogenesisstem cellssystems biologytheoretical modellingtimelapse imagingzebrafishAnimalsAnimals, Genetically ModifiedArtificial Gene FusionBasic Helix-Loop-Helix Transcription FactorsBiological ClocksCell Physiological PhenomenaCells, CulturedGene Expression ProfilingGenes, ReporterZebrafishZebrafish ProteinsOates FC0011240601 Biochemistry and Cell Biology