The Francis Crick Institute
elife-60067-v2.pdf (5.44 MB)

Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution.

Download (5.44 MB)
journal contribution
posted on 2020-10-23, 13:16 authored by John Huddleston, John R Barnes, Thomas Rowe, Xiyan Xu, Rebecca Kondor, David E Wentworth, Lynne Whittaker, Burcu Ermetal, Rodney Stuart Daniels, John W McCauley, Seiichiro Fujisaki, Kazuya Nakamura, Noriko Kishida, Shinji Watanabe, Hideki Hasegawa, Ian Barr, Kanta Subbarao, Pierre Barrat-Charlaix, Richard A Neher, Trevor Bedford
Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates. Effective vaccine strains need to represent H3N2 populations circulating one year after strain selection. Experts select strains based on experimental measurements of antigenic drift and predictions made by models from hemagglutinin sequences. We developed a novel influenza forecasting framework that integrates phenotypic measures of antigenic drift and functional constraint with previously published sequence-only fitness estimates. Forecasts informed by phenotypic measures of antigenic drift consistently outperformed previous sequence- only estimates, while sequence-only estimates of functional constraint surpassed more comprehensive experimentally-informed estimates. Importantly, the best models integrated estimates of both functional constraint and either antigenic drift phenotypes or recent population growth.


Crick (Grant ID: 10030, Grant title: McCauley FC001030)