The Francis Crick Institute
EMS85024.pdf (2.76 MB)

Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection.

Download (2.76 MB)
journal contribution
posted on 2020-08-27, 15:44 authored by Helena Aegerter, Justina Kulikauskaite, Stefania Crotta, Harshil Patel, Gavin Kelly, Edith M Hessel, Matthias Mack, Soren Beinke, Andreas Wack
Despite the prevalence and clinical importance of influenza, its long-term effect on lung immunity is unclear. Here we describe that following viral clearance and clinical recovery, at 1 month after infection with influenza, mice are better protected from Streptococcus pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs) that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a surface phenotype similar to resident AMs but display a unique functional, transcriptional and epigenetic profile that is distinct from resident AMs. In contrast, influenza-experienced resident AMs remain largely similar to naive AMs. Thus, influenza changes the composition of the AM population to provide prolonged antibacterial protection. Monocyte-derived AMs persist over time but lose their protective profile. Our results help to understand how transient respiratory infections, a common occurrence in human life, can constantly alter lung immunity by contributing monocyte-derived, recruited cells to the AM population.


Crick (Grant ID: 10206, Grant title: Wack FC001206)