The Francis Crick Institute
Browse
s41586-022-04824-9 (1).pdf (13.86 MB)

Grey wolf genomic history reveals a dual ancestry of dogs

Download (13.86 MB)
journal contribution
posted on 2022-07-14, 12:51 authored by Anders Bergström, David WG Stanton, Ulrike H Taron, Laurent Frantz, Mikkel-Holger S Sinding, Erik Ersmark, Saskia Pfrengle, Molly Cassatt-Johnstone, Ophélie Lebrasseur, Linus Girdland-Flink, Daniel M Fernandes, Morgane Ollivier, Leo Speidel, Shyam Gopalakrishnan, Michael V Westbury, Jazmin Ramos-Madrigal, Tatiana R Feuerborn, Ella Reiter, Joscha Gretzinger, Susanne C Münzel, Pooja Swali, Nicholas J Conard, Christian Carøe, James Haile, Anna Linderholm, Semyon Androsov, Ian Barnes, Chris Baumann, Norbert Benecke, Hervé Bocherens, Selina Brace, Ruth F Carden, Dorothée G Drucker, Sergey Fedorov, Mihály Gasparik, Mietje Germonpré, Semyon Grigoriev, Pam Groves, Stefan T Hertwig, Varvara V Ivanova, Luc Janssens, Richard P Jennings, Aleksei K Kasparov, Irina V Kirillova, Islam Kurmaniyazov, Yaroslav V Kuzmin, Pavel A Kosintsev, Martina Lázničková-Galetová, Charlotte Leduc, Pavel Nikolskiy, Marc Nussbaumer, Cóilín O’Drisceoil, Ludovic Orlando, Alan Outram, Elena Y Pavlova, Angela R Perri, Małgorzata Pilot, Vladimir V Pitulko, Valerii V Plotnikov, Albert V Protopopov, André Rehazek, Mikhail Sablin, Andaine Seguin-Orlando, Jan Storå, Christian Verjux, Victor F Zaibert, Grant Zazula, Philippe Crombé, Anders J Hansen, Eske Willerslev, Jennifer A Leonard, Anders Götherström, Ron Pinhasi, Verena J Schuenemann, Michael Hofreiter, M Thomas P Gilbert, Beth Shapiro, Greger Larson, Johannes Krause, Love Dalén, Pontus Skoglund
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.

Funding

Crick (Grant ID: 10595, Grant title: Skoglund FC001595) European Research Council (Grant ID: 852558, Grant title: ERC 852558 - AGRICON) Wellcome Trust (Grant ID: 217223/Z/19/Z, Grant title: WT 217223/Z/19/Z)

History

Usage metrics

    The Francis Crick Institute

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC