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Abstract 
The development of the vertebrate spinal cord involves the formaCon of the neural tube and the 
generaCon of mulCple disCnct cell types. The process starts during gastrulaCon, combining axial 
elongaCon with specificaCon of neural cells and the formaCon of the neuroepithelium. Tissue 
movements produce the neural tube which is then exposed to signals that provide paAerning 
informaCon to neural progenitors. The intracellular response to these signals, via a gene regulatory 
network, governs the spaCal and temporal differenCaCon of progenitors into specific cell types, 
facilitaCng the assembly of funcConal neuronal circuits. The interplay between the gene regulatory 
network, cell movement, and Cssue mechanics generates the conserved neural tube paAern observed 
across species. In this review we offer an overview of the molecular and cellular processes governing 
the formaCon and paAerning of the neural tube, highlighCng how the remarkable complexity and 
precision of vertebrate nervous system arises. We argue that a mulCdisciplinary & mulCscale 
understanding of the neural tube development, paired with the study of species-specific strategies will 
be crucial to tackle the open quesCons.  
 

Introduc.on 
The formaCon of the vertebrate nervous system commences during gastrulaCon with the emergence 
of the neural tube (NT). In amniotes, the primordium of the NT appears as a thickened epithelium over 
the embryo's midline, the central region of which invaginates and the lateral edges rise and fuse to 
establish the dorsal midline of the NT (for a comprehensive introducCon, refer to (Darnell and Gilbert, 
2017; Gilbert and Barresi, 2017). As development proceeds, the spinal cord forms with the gradual 
addiCon of neural progenitors to the posterior end of the NT from uncommiAed cells in the caudal 
region of the elongaCng embryo. The outcome is a bilaterally symmetrical pseudostraCfied epithelial 
tube, the basal surfaces of which form the lateral edges of the NT and the apical surfaces are oriented 
towards the central lumen that later becomes the central canal and ventricles of the nervous system. 
During the early phase of NT development, neural progenitors proliferate, and their cell bodies, 
containing their nuclei, undergo a stereotypic interkineCc nuclear movement (IKNM) coordinated with 
cell cycle progression (Lee and Norden, 2013). This results in a substanCal increase in the number of 
neural progenitors and contributes to the remarkable enlargement of the NT (Kicheva et al., 2014). As 
neural progenitors differenCate into post-mitoCc neurons, they detach from the apical surface of the 
neuroepithelium and migrate laterally, taking up residence basal to the progenitors.  
 
Neural progenitors acquire disCnct transcripConal idenCCes that determine the specific cell type(s) 
that they will generate. These transcripConal programs depend on the locaCon of the progenitor 
within the NT (Briscoe and Small, 2015; Dessaud et al., 2007; Jessell, 2000). For instance, in the ventral 
half of the developing spinal cord, the neuroepithelium is divided into six discrete domains arrayed 
along the dorsoventral (DV) axis. Each domain expresses a unique combinaCon of homeodomain and 
bHLH transcripCon factors (Briscoe et al., 2000; Ericson et al., 1997). This transcripConal code governs 
the differenCaCon of progenitors into specific cell types, such as motor neurons and interneurons 
(reviewed in (Alaynick et al., 2011; Sagner and Briscoe, 2019)). Similar transcripConal codes are found 
in other regions of the NT and control the spaCal paAern of neurogenesis (for reviews, see (Guillemot, 
2007; Lai et al., 2016; Pearson and Placzek, 2013; Scholpp and Lumsden, 2010)). This principle, in which 
spaCally restricted expression of transcripConal factors in neural progenitors leads to the spaCally 



segregated generaCon of disCnct neuronal subtypes, represents the first step in the assembly of 
funcConal neuronal circuits. It facilitates the formaCon of correct synapCc connecCons between 
neighbouring cell types and ensures that newly generated neurons are posiConed in locaCons where 
they are exposed to appropriate axon guidance signals. Thus, the subsequent funcCon of the 
vertebrate nervous system is conCngent upon these paAerns of transcripCon factor gene expression 
in neural progenitors. 
 
Here we will summarise current molecular and cellular understanding of how the posterior region of 
the nervous system, comprising the spinal cord, is formed and paAerned. We will highlight how 
molecular and cellular processes spanning gene regulaCon, cell moClity and Cssue mechanics 
coordinate to generate the NT.  The formaCon of the neural tube showcases how diverse strategies 
and routes are uClised throughout development to produce a highly conserved paAern across species.  
 

1. Pa2erning the head-to-tail axis 
The formaCon of the main body axis disCnguishes head (rostral) from the future tail (caudal) early in 
development, concomitant with the formaCon of the primiCve streak (Arnold and Robertson, 2009; 
Metzis et al., 2018). This process is criCcal for spinal cord formaCon. Despite shared similariCes in gene 
expression and funcCon, the spinal cord exhibits a closer lineage history to the mesodermal derived 
somites of the trunk than to neurons and glia in the brain (Brown and Storey, 2000; Davis and Kirschner, 
2000; Tzouanacou et al., 2009). This provided evidence of a populaCon of mulCpotent progenitors that 
generate spinal cord, somites and notochord during the process of axis elongaCon (Cambray and 
Wilson, 2007; Rito et al., 2023; Tzouanacou et al., 2009). These progenitors reside in the caudal lateral 
epiblast (CLE) at the posterior pole of vertebrate embryos and are termed neuromesodermal 
progenitors (NMPs) (Figure 1A) (Catala et al., 1996; Guillot et al., 2021; Wymeersch et al., 2016). NMPs 
form in a region of the embryo that expresses Wnt and FGF ligands and are characterised by the 
expression of the transcripCon factors Cdx1,2,4, Sox2 and Tbxt (Henrique et al., 2015; Wymeersch et 
al., 2021). Whilst undergoing differenCaCon, NMPs must also self-renew to maintain a progenitor pool 
for complete axial elongaCon and understanding the specificaCon and behaviour of NMPs has been 
the focus of studies in recent years (Wymeersch et al., 2021) 
 

2.1 Signals specifying NMPs 
2.1.1 Wnt and Fibroblast Growth Factor (FGF) 
Wnt and FGF ligands are highly expressed during axis elongaCon and regulate the expression of 
Cdx1,2,4, Tbxt and Sox2 in NMPs in vivo (Boulet and Capecchi, 2012; Goto et al., 2017; MarCn and 
Kimelman, 2012; Rivera-Pérez and Magnuson, 2005; Tsakiridis et al., 2014; Yoshikawa et al., 1997) and 
in vitro (Beccari et al., 2018; Frith et al., 2018; GouC et al., 2014; Lippmann et al., 2015; Moris et al., 
2020; Olmsted and Paluh, 2021) (Figure 1A). MutaCons in the Wnt pathway result in defects in axial 
elongaCon (Arnold et al., 2000; Cunningham et al., 2015; Erter et al., 2001; Garriock et al., 2015; MarCn 
and Kimelman, 2012; Yamaguchi et al., 1999a). IniCally, high levels of Wnt signalling induces Tbxt 
expression and marks the caudal region of the embryo (Liu et al., 1999; Metzis et al., 2018; Takada et 
al., 1994; Tsakiridis et al., 2014). Wnt expression is maintained caudally by a Tbxt-Wnt feedback loop, 
as shown by direct genomic interacCons between Tbxt and Wnt effectors, which acCvate each others 
expression to sustain NMP self renewal (Amin et al., 2016; Arnold et al., 2000; Koch et al., 2017; MarCn 



and Kimelman, 2012; Yamaguchi et al., 1999b). Wnt signalling specifies paraxial mesoderm (Dunty et 
al., 2007; Koch et al., 2017; MarCn and Kimelman, 2012), by upregulaCng T-box genes (ChalamalaseAy 
et al., 2014; Chapman and Papaioannou, 1998; Yabe and Takada, 2012) and inhibiCng the pro-neural 
gene Sox2 (Takemoto et al., 2011).  
 
FGF ligands are also expressed in caudal regions of the embryo (Figure 1A) and FGF signalling is 
required for Tbxt/Sox2 expression (Boulet and Capecchi, 2012; Takemoto et al., 2005) and axial 
elongaCon (Deng et al., 1994; Olivera-MarCnez et al., 2012).  FGF signalling begins to aAenuate as 
NMPs leave the progenitor zone and transiCon towards a neural idenCty (Corral et al., 2002; Mathis et 
al., 2001). As FGF signalling declines in these cells, Erk1/2 phosphorylaCon falls, triggering a 
remodelling of the chromaCn landscape and removing repressive H3K27me3 marks resulCng in 
expression of Pax6 (Semprich et al., 2022). However, the downregulaCon of FGF signalling is not 
sufficient for the conversion of preneural cells to neural progenitors. Exposure to ReCnoic Acid (RA) is 
also required (Corral et al., 2002; Patel et al., 2013; Sasai et al., 2014). ConCnued FGF signalling, by 
contrast, inhibits Pax6 expression consistent with the antagonisCc acCons of RA and FGF in neural 
specificaCon (Bertrand et al., 2000).   

  
2.1.2 Re9noic Acid (RA) 
As the spinal cord forms, there are significant changes in the Cssue morphology and the surrounding 
signalling environment. Somites start expressing Raldh2, which synthesises RA. RA signalling 
contributes to the generaCon of neural progenitors during spinal cord formaCon (Figure 1A) (Cambray 
and Wilson, 2007; Corral and Storey, 2004; GouC et al., 2017a; Henrique et al., 2015; MarCn and 
Steventon, 2022; Wymeersch et al., 2021). Raldh2 null mice generate Sox1/2 posiCve pre-neural cells, 
however transiCon to Pax6+ and Olig2+ neural progenitors (NPCs) is RA dependent (Grandel et al., 
2002; Molotkova et al., 2005). RA signalling negaCvely regulates FGF signalling, facilitaCng the 
progression of pre-neural cells to neural progenitors (Corral et al., 2003; Sirbu and Duester, 2006).  
Whilst RA is criCcal for specifying cells toward a spinal cord fate, excess RA signalling depletes the pool 
of NMPs and represses mesodermal differenCaCon (GouC et al., 2017a). The RA degrading enzyme 
Cyp26a1 is expressed in the tailbud, repressing neural differenCaCon to maintain the balance of self-
renewal and differenCaCon of NMPs under the control of Cdx2 (GouC et al., 2017b; Rhinn and Dollé, 
2012; Sakai et al., 2001; Savory et al., 2009; Young et al., 2009). 
 

2.2 Gene expression during trunk forma=on 
2.2.1 Homeobox genes: specifying axial iden9ty in the spinal cord 
Cells acquire disCnct rostro-caudal idenCCes before becoming neural progenitor cells (NPCs). This is 
driven by Cdx and Hox genes family members, which are also integral to driving the posterior growth 
of NMPs (Figure 1A) (Bel-Vialar et al., 2002; Metzis et al., 2018; Skromne et al., 2007). Wnt signalling 
induces expression of Cdx family transcripCon factors. Loss of Cdx1/2/4 result in defects in axial 
elongaCon and reduced expression levels of Wnt and FGF ligands in the tailbud (Akker et al., 2002; 
Amin et al., 2016; Rooijen et al., 2012; Savory et al., 2009; Ven et al., 2011; Young et al., 2009). Cdx 
family members are required for Hox gene expression in NMPs and the resulCng spinal cord (Bel-Vialar 
et al., 2002; Metzis et al., 2018; Skromne et al., 2007). Cdx2 removes repressive H3K27me3 marks 
(Mazzoni et al., 2013) and remodels 3D chromaCn architecture (Rekaik et al., 2023) to allow Hox gene 
acCvaCon. Ectopic Hox gene expression rescues elongaCon defects in Cdx null mice (Young et al., 2009).  



 
Hox genes impart axial idenCty (Denans et al., 2015; Hubert and Wellik, 2023; Mallo et al., 2010; 
Wacker et al., 2004). Hox4-11 genes are expressed in the CLE and spinal cord (Figure 1A). Paralogs 4-8 
are expressed in cervical/brachial NPCs, Hox9 in thoracic regions and Hox10-13 in lumbosacral regions 
(Philippidou and Dasen, 2013; Sagner and Briscoe, 2019). Pairs of Hox genes along the spinal cord 
exhibit cross-repressive interacCons that prevent the generaCon of cells with mixed axial idenCCes and 
HoxC members determine the specific subtype idenCty of spinal cord motor neurons (Dasen et al., 
2005, 2003) Thus, Cdx and Hox gene expression paAerns serve as a molecular map of axial idenCty in 
the spinal cord. However, how cells interpret the molecular map established by Hox and Cdx gene 
expression, is sCll unclear. Moreover, the cell type specific expression paAerns and funcCons of Hox 
genes remains to be elucidated in cell types other than motor neurons.   
 

2.2.2 Tbxt and Sox2 mediate mesodermal vs neural fate decisions 
The Tbox factor TbxT and the SoxB genes Sox2/3 are expressed in NMPs in many species (Figure 1B)  
(GouC et al., 2014; Henrique et al., 2015; Javali et al., 2017; MarCn and Kimelman, 2012; Metzis et al., 
2018; Wymeersch et al., 2016). The TbxT gene encodes the protein Brachyury, which was first 
idenCfied by the birth of short-tailed mice (Chesley, 1935; Gluecksohn-Schoenheimer, 1938; Herrmann 
et al., 1990). During gastrulaCon, TbxT is expressed in the posterior epiblast and becomes restricted to 
the primiCve streak and the axial & paraxial mesoderm. Subsequently, Tbxt expression is observed in 
the tailbud (Kispert et al., 1995; Rivera-Pérez and Magnuson, 2005; Wilkinson et al., 1990). This paAern 
is conserved across bilaterians (Knezevic et al., 1997; Schulte-Merker et al., 1994; Smith et al., 1991) 
highlighCng the role of TbxT in the formaCon of the post cranial axis. TbxT remodels chromaCn 
accessibility, opening and binding genomic sites of the Wnt signalling pathway, and promoCng 
mesodermal differenCaCon (Amin et al., 2016; Gentsch et al., 2013; Gogolou et al., 2022). A higher 
raCo of TbxT expression over Sox2 iniCtates greater cellular moClity, the onset of EMT, and expression 
of Tbox genes. These all ensure NMP contribuCon to paraxial mesoderm specificaCon at the expense 
of neural fate (Chapman and Papaioannou, 1998; Gentsch et al., 2013; Kinney et al., 2020; Romanos 
et al., 2021; Wilson et al., 1995)   
 
For the correct proporCons of spinal cord and paraxial trunk mesoderm, NMPs must self-renew and 
differenCate in the correct proporCons. This is dependent on the balance of signalling pathways and 
gene expression. Tbxt and Sox2 are both expressed at low levels in NMPs (Wymeersch et al., 2016) and 
individual Tbxt+/Sox2+ cells can contribute to both neural and mesodermal Cssues upon graning 
(GouC et al., 2014; Tsakiridis et al., 2014). Recent work has developed a model by which there are 
disCnct routes for NMP cell fate decisions towards neural or mesoderm in response to changing 
signalling regimes (Meritxell Sáez et al., 2022). Rather than NMPs exhibiCng a stable low level of Tbxt 
and Sox2 expression, their expression is heterogenous (Toh et al., 2022). This is postulated to occur 
due to differences in signalling environment (Edri et al., 2019; Wymeersch et al., 2021) influencing 
Sox2/Tbxt expression through mutual co-repression at regulatory elements (Koch et al., 2017). 
However, recent data suggests NMP fate specificaCon occurs independently of direct mutual 
antagonism between Tbxt and Sox2 (GuibenCf et al., 2021). Moreover, single-cell sequencing has 
revealed a role for RA in concert with Wnt/FGF signalling for NMP specificaCon (GouC et al., 2017a) 
indicaCng that further work is required to unravel the precise mechanisms of NMP cell fate decisions.  
 



2.3 Transi=on from NMP to Neural Progenitor goes through a pre-neural intermediate 
NMPs undergo a series of transiCons that result in spinal cord formaCon (Figure 1B) (Koch et al., 2017; 
Romanos et al., 2021; Toh et al., 2022). Sox2 can act as a pioneer factor that remodels the chromaCn 
landscape facilitaCng the expression of the gene regulatory network characterisCc of NPCs (Iwafuchi-
Doi and Zaret, 2016; Michael et al., 2020). The regulaCon of Sox2 expression in forming neural 
progenitors occurs through Wnt/FGF dependent N1 Cis-regulatory element (CRE) (Takemoto et al., 
2005; Uchikawa et al., 2003). Sox2 acCvity cross-regulates Wnt signalling by modulaCng the binding of 
the Wnt pathway transcripCon effector proteins TCF/LEF (Blassberg et al., 2022; Mukherjee et al., 
2022) by directly binding to them (Zorn et al., 1999). This feedback loop ensures that Sox2 represses 
excess mesodermal differenCaCon by regulaCng Wnt signalling (Yoshida et al., 2014) and prevenCng 
delaminaCon from the CLE (Kinney et al., 2020). In addiCon to acCvaCng Sox2, the spinal cord specific 
N1 CRE can be bound by Tbox genes which repress Sox2 expression in cells commiAed to the 
mesoderm lineage (Koch et al., 2017; Takemoto et al., 2011). A delicate balance of signals and gene 
regulatory mechanisms control the proporCons of self-renewal and differenCaCon in the CLE. 
However, once a commitment point is reached, Sox2 iniCates a transiCon from NMP to NPC through 
an intermediate pre-neural state (Figure 1B) downstream of a changing signalling environment and 
concurrent with the morphogeneCc movements that will give rise to the NT. 
 
The expression of Nkx1-2 in the caudal epiblast in a Sox2 and FGF-dependent manner is associated 
with the pre-neural state (Figure 1B) (Bae et al., 2004; Delfino-Machín et al., 2005; GouC et al., 2017a; 
Rangini et al., 1989; Schubert et al., 1995; Simon and Lutin, 2003; Spann et al., 1994). Lineage tracing 
experiments revealed the contribuCon of Nkx1-2+ cells to the neural, mesodermal, notochord and 
neural crest derivaCves, (Albors et al., 2018; Cooper et al., 2022; Corral et al., 2003; Sasai et al., 2014; 
Verrier et al., 2018). consistent with Nkx1-2 marking NMPs in addiCon to pro-neural cells. However, 
ectopic expression of Nkx1-2 in the pre-neural domain represses the inducCon of the neural progenitor 
markers Irx3 and Pax6 (Sasai et al., 2014) and maintains Tbxt expression in vitro (Tamashiro et al., 
2012). Nkx1-2+ pre-neural cells form spinal cord progenitors downstream of RA signalling (Corral et 
al., 2002; Sasai et al., 2014) in concert with epigeneCc remodelling (Patel et al., 2013), yet they retain 
the potenCal to give rise to mesoderm (Albors et al., 2018). These observaCons suggest that the pre-
neural state is a checkpoint prior to neural differenCaCon and contributes to the balance of NMP cell 
fate dynamics (Figure 1B). However, the precise mechanism of how signals and differenCaCon 
trajectories of NMPs are integrated to drive cell fate specificaCon is unclear. In parCcular, the 
requirement for NMPs to transiCon through a pre-neural state and how associated gene and 
epigeneCc changes impact cell fate potenCal remains to be resolved.   
 

2.4 Axial elonga=on drives forma=on of the body plan 
Signalling and geneCc mechanisms must be coordinated with changes in cell proliferaCon and 
movements for axial elongaCon to occur (Bocanegra-Moreno et al., 2023; Leber and Sanes, 1995). 
Several experiments revealed a pool of proliferaCve stem cells in the tailbud that drive axial elongaCon 
(Cambray and Wilson, 2002; Mathis and Nicolas, 2000; Nicolas et al., 1996). However, proliferaCon 
alone is not sufficient to elongate the body axis. Cell cycle disrupCon by geneCc (Riley et al., 2010) and 
pharmacological means (Bénazéraf et al., 2010) is not deleterious for the formaCon of the spinal cord. 
The NT elongates through a process of convergence extension (CE) whereby cells from lateral regions 
of the body converge medially, fuelling elongaCon (Figure 1C) (Shih and Keller, 1992; Steventon et al., 



2016; Xiong et al., 2020). FGF signalling is required for CE (Bénazéraf et al., 2010; Ciruna and Rossant, 
2001; Guillot et al., 2021; Steventon et al., 2016). Moreover, mutaCons in the non-canonical 
Wnt/planar cell polarity (PCP) pathway, such as the ligands Wnt5a and Wnt11 (Andre et al., 2015; 
Heisenberg et al., 2000; Yamaguchi et al., 1999a) and intracellular effectors Ptk7 and Vangl2 (López-
Escobar et al., 2018; Williams et al., 2014) also affect CE, resulCng in a shorter rostro-caudal axis 
independently of cell signalling (Andre et al., 2015).  These data highlight the importance of mulCple 
mechanisms both at the Cssue and the molecular level to generate the spinal cord paAern. AddiConal 
studies have also proposed rostral to caudal gradients of metabolism (Oginuma et al., 2017); 
extraembryonic tension (Kunz et al., 2023); and cell jamming (Mongera et al., 2018) upstream of 
cellular moClity. Future studies will shed light on how extrinsic chemical and mechanical signals and 
intrinsic gene regulaCon properly paAern axial elongaCon and spinal cord formaCon.  
 

2.5 PaGerning mediolaterally: genera=ng mul=ple cell types from the pre-neural tube 
As NMPs differenCate towards spinal cord, they iniCally form a flat epithelial sheet called the neural 
plate. This gives rise to neural crest cells as well as NPCs (Figure 1D) (Albors et al., 2018; Brown and 
Storey, 2000; Frith et al., 2018; Lukoseviciute et al., 2021). Mesodermal cells underneath the neural 
plate secrete Bone MorphogeneCc Protein (BMP) inhibitors (Figure 1D). These play an important role 
in the specificaCon of NPC idenCty by protecCng prospecCve NPCs from BMP ligands that are secreted 
laterally (Marchant et al., 1998; Wawersik et al., 2005). The opposing gradients of BMP ligands and 
inhibitors result in a low concentraCon of BMP acCvity at the border between pre-neural and non-
neural epithelium where neural crest is induced (Figure 1D). This region of the embryo has a 
characterisCc gene expression profile that includes Pax7 and Sox9 (Basch et al., 2006; Corral et al., 
2003; Garcıá-Castro et al., 2002). The consequence is a mediolateral (ML) paAern of differenCaCon 
with disCnct gene expression paAerns. Sox2 and Pax7 are expressed in pre-neural cells (Marznez-
Morales et al., 2011) and each gene gradually becomes segregated to neural or neural crest cells 
respecCvely (Roellig et al., 2017).  
 

2. Neural tube closure is driven by cell movements and mechanical 
forces  

Once the flat neural plate has acquired a 2D paAern across its mediolateral axis, the process of 
neurulaCon starts (Figure 1C). This serves as a good example of how morphogenesis and paAerning 
require fine-tuned interplay of mechanisms acCng across different scales for correct paAern formaCon. 
Mammals, birds and amphibians uClise two different mechanisms of NT formaCon along the rostro-
caudal axis (Colas and Schoenwolf, 2001; Douarin et al., 1998). Along most of the amniote spinal cord, 
the flat neural plate forms folds that elevate the dorsal regions which bend and converge medially, 
subsequently fusing and forming a hollow tube (Figure 1C). By contrast, in the tailbud, the NT is shaped 
by a process known as “secondary neurulaCon”. From the 25 somite in chick, 30 in human and 31 in 
mouse embryos proceeding caudally (Catala, 2021; Copp et al., 1982; Müller and O’Rahilly, 1987; 
Schoenwolf, 1984), cells converge and condense into a medullary cord (Figure 1Di), that subsequently 
epithelializes (Figure 1Dii) and cavitates (Figure 1Diii) to create the lumen of the future NT (Figure 1D) 
(Douarin et al., 1998). Teleosts, on the other hand, have evolved a unique strategy for neurulaCon, 
which progresses through the formaCon of a solid rod (neural keel) that later opens a lumen (Araya et 
al., 2016). This has been compared to secondary neurulaCon but occurring throughout the rostro-



caudal axis. However, there is evidence to suggest that the folding of the neural keel folds is similar to 
the process of primary neurulaCon, prompCng the need for further invesCgaCon to elucidate this 
process (Lowery and Sive, 2004; Werner et al., 2021).  
 
In most of the spinal cord, primary neurulaCon begins with the neural plate bending at the middle 
hinge point (MHP), at the midline of the neural plate (Figure 1Ci, ii). The locaCon of this hinge point is 
instructed by the secreCon of Sonic hedgehog (Shh) and addiConal factors from the notochord (PaAen 
and Placzek, 2002; Ybot-Gonzalez et al., 2002). Once the posiCon of the MHP is established, neural 
plate bending is driven by intrinsic forces, that appear to be produced by cell shape changes. Bending 
is aided by apical actomyosin turnover under the control of the PCP pathway (Baldwin et al., 2022; 
Escuin et al., 2015; Nishimura et al., 2012; Nishimura and Takeichi, 2008; Ybot-Gonzalez and Copp, 
1999) and acquisiCon of a wedge-like cell shape close to the midline (Figure 1Cii)(Schoenwolf, 1991, 
1985; Smith and Schoenwolf, 1989). Changes in cell shape synchronize with mitosis and nuclear 
posiCon (Ampartzidis et al., 2023; Sausedo et al., 1997; Smith and Schoenwolf, 1988), coupling cell 
cycle phase with morphogenesis, which has been proposed in zebrafish (Ciruna et al., 2006). 
Subsequently, the elevated neural folds bend at the dorsolateral hinge points (DLHP) (Figure 1Cii) 
instructed by Noggin (Ybot-Gonzalez et al., 2007) and converge to the dorsal midline, driven by 
extrinsic forces exerted by the lateral surface epithelium and its extracellular matrix (ECM) 
(Schoenwolf, 1991; Smith and Schoenwolf, 1991). However, intrinsic mechanisms, such as a 
dorsolateral increase in cell density (McShane et al., 2015) in concert with an apicobasal force exerted 
by apoptoCc cells within the NT may facilitate bending at the DLHP (Roellig et al., 2022). It is important 
to note that neurulaCon differs along the rostrocaudal axis within the same embryos, moving from 
predominantly MHP-mediated anteriorly, to mostly driven by DLHP posteriorly (Shum and Copp, 1996; 
Ybot-Gonzalez and Copp, 1999). 
 
During NT closure, an F-acCn cable runs along the neural folds, mechanically coupling the enCre folding 
neural plate (Galea et al., 2017; Nishimura et al., 2012). Surface ectoderm cell protrusions - regulated 
by Rho-GTPases- aid dorsal fusion during neural fold apposiCon (Bancron and Bellairs, 1975; 
Hashimoto et al., 2015; Mak, 1978; Massarwa and Niswander, 2012; Ogura et al., 2011; Pyrgaki et al., 
2010; Rolo et al., 2016; Schoenwolf, 1979; Waterman, 1976). Finally, NT fusion is facilitated by the focal 
anchorage of the folds to an integrin-b1 rich area (Molè et al., 2023, 2020).  
 
Many TFs and signalling pathways have been shown to regulate cellular and mechanical events of NT 
closure. Zic2 controls the formaCon of cell protrusions necessary for NT closure (Rolo et al., 2016) and 
Grhl- family TFs are required for several adhesion and EMT processes downstream of Wnt/PCP 
(Kimura-Yoshida et al., 2015; Pyrgaki et al., 2011; Rifat et al., 2010; Senga et al., 2012; Werth et al., 
2010). Wnt/PCP regulaCon of Pax3, Cdx2 and Zic2 as well as their cross-regulaCon play a role in 
neurulaCon (Ferras et al., 2012; Sanchez-Ferras et al., 2014; Savory et al., 2009; Zhao et al., 2013), 
although the precise mechanism is sCll unclear (Sanchez-Ferras et al., 2014).  
 
While the influence of signalling on cellular events has been invesCgated, the influence of shape and 
mechanics on signalling has received less aAenCon. Recent studies have suggested a regulaCon of the 
PCP pathway component Vangl2 by MyosinII (Matsuda and Sokol, 2021; Newman-Smith et al., 2015; 
Ossipova et al., 2015), whilst the Hippo pathway is also mechanically regulated during NT closure 
(Marshall et al., 2023). In addiCon, different aspects of cell metabolism as well as ECM composiCon 



are crucial for correct neurulaCon (Castro et al., 2012, 2010; Copp and Greene, 2010; Dunlevy et al., 
2007, 2006; Leung et al., 2017; Ybot-Gonzalez et al., 2005). Thus, NT closure offers a tractable system 
to study the interacCon of Cssue, cellular and molecular processes involved in the generaCon of Cssue 
shape. 
 
Once NT closure is complete, cell movements and rearrangements within the epithelium conCnue up 
to E9.5 in mouse and HH15 in chicken, before giving rise to the rostrocaudal, mediolateral and 
dorsoventral paAerning that consCtute the mature spinal cord (Bocanegra-Moreno et al., 2023; Leber 
and Sanes, 1995). Cellular movements first cease along the rostrocaudal axis (Leber and Sanes, 1995) 
then along the DV axis, as NPCs are specified into disCnct domains (Erskine et al., 1998; Kicheva et al., 
2014). The dispersion of cells is mostly isotropic across different NPC idenCCes, however pMN 
progenitors persist with cellular rearrangements for longer (Bocanegra-Moreno et al., 2023). 
Movement along the ML axis is the last to stop, consistent with the radial movement of postmitoCc 
neurons outside of the progenitor zone. From this moment onwards, the cellular rearrangements in 
the spinal cord are mostly due to dispersal and passive migraCon (Leber and Sanes, 1995).  
 
In addiCon, cell body rearrangements such as IKNM maintain the epithelium in a fluid like state unCl 
E9.5 in mouse (Bocanegra-Moreno et al., 2023; Kicheva et al., 2014). Aner these rearrangements 
become more restricted as proliferaCon declines, the mechanical property of the epithelium 
transiCons to a more glass-like behaviour (Bocanegra-Moreno et al., 2023). 
 

3. Dorsoventral pa2erning 
3.1 Opposing gradients 
NPCs are exposed to anCparallel signals secreted from opposite poles of the NT that specify a dorsal 
to ventral spaCal paAern (Alaynick et al., 2011). These signals act as morphogens – intercellular 
signalling molecules that exert their effects in a concentraCon dependent manner across developing 
Cssues – to convey spaCal informaCon that organise and generate the diverse cellular subtypes of the 
NT (Kicheva and Briscoe, 2023). Sonic hedgehog (Shh) is produced ventrally by the notochord and later 
the floor plate (Echelard et al., 1993; Krauss et al., 1993; Yamada et al., 1993), while ligands of the BMP 
and Wnt families are secreted dorsally by the surface ectoderm and roof plate (Liem et al., 1997; 
Muroyama et al., 2002; Wine-Lee et al., 2004).  
 
Numerous studies, taking advantage of gene deleCons and ex vivo explants, have idenCfied the 
requirement for these signals to generate the complement of NPCs found in the spinal cord (Andrews 
et al., 2017; Chiang et al., 1996; Lee et al., 2000; Liem et al., 1997; LiCngtung and Chiang, 2000; MarC 
et al., 1995; Muroyama et al., 2002; Roelink et al., 1995; Wijgerde et al., 2002). In the NT, as in other 
growing Cssues (Morishita and Iwasa, 2009), the graded signals are integrated along a single axis to 
provide precise spaCal informaCon and minimize paAerning errors (Zagorski et al., 2017). However, in 
silico modelling has quesConed whether two disCnct gradients are necessary (VeAer and Iber, 2022), 
at least in some idealised cases, highlighCng the need for further invesCgaCon.  
 
The combinaCon of anCparallel dorsal and ventral signalling gradients results in the generaCon of 11 
dorsoventral domains of NPCs (Figure 2A). Each of these domains give rise to funcConally disCnct 



neuronal subtypes which relies on a combinaCon of signalling concentraCon (Briscoe and Ericson, 
2001, 1999; Ericson et al., 1997, 1996; Stamataki et al., 2005; Yamada et al., 1993) and Cme duraCon 
(Dessaud et al., 2007, 2010). TFs, such as Nkx2-2, idenCfying progenitors closer to the source of Shh, 
require a higher concentraCon and duraCon of Shh exposure to be expressed than TFs such as Olig2, 
which are expressed in progenitors further from the ventral midline (Figure 2B, C). MechanisCcally, ex 
vivo studies have shown that neural cells translate ligand concentraCon into proporConal duraCons of 
Gli acCvity. This is achieved via a temporal adaptaCon system, that relies on the progressive 
desensiCzaCon of cells to Shh, mediated by Shh signalling inhibitor Ptch1 (Cohen et al., 2015; Dessaud 
et al., 2007) and aided by the movement of cells away from the source during NT growth (Kicheva et 
al., 2014). Thus, cells exposed to a lower concentraCon of Shh have a steeper and faster decline of 
downstream acCvity. This scenario poses the quesCon of how cells convert Cme and dose dependent 
informaCon from morphogens into spaCally discrete domains of gene expression. 
 

3.2 Intracellular morphogen signalling 
3.2.1 Ventral neural tube 
The molecular mechanism that converts the paAerning signal inputs into disCnct progenitor idenCCes 
is best understood for Shh in the ventral NT. The intracellular response to Shh is mediated by Gli family 
TFs (Hui and Angers, 2011; Jiang and Hui, 2008), which have dual funcCons as transcripConal 
repressors (GliR) and acCvators (GliA) (Hui and Angers, 2011). A gradient of Gli acCvity is established 
by Shh signalling, resulCng in expression of ventral and repression of dorsal TFs. The Gli gradient is 
decoded into gene expression through Gli-binding sites present in cis regulatory elements (CREs) of 
genes expressed in the ventral NT (Figure 2D, E)  (Oosterveen et al., 2012; Peterson et al., 2012; Vokes 
et al., 2007). 
 
A combinaCon of molecular, geneCc and modelling studies have uncovered a mechanism for decoding 
graded Shh signaling based on cross regulatory interacCons between TFs expressed in neural 
progenitors (Figure 2D) (Briscoe et al., 2000; Novitch et al., 2001). DeleCon of individual TFs lead to 
switches in NPC fate and expansion of TFs characterisCc of the adjacent domain (Balaskas et al., 2012; 
Briscoe et al., 1999, 2000; Briscoe and Ericson, 2001; Ericson et al., 1997; Novitch et al., 2001; Vallstedt 
et al., 2001; Zhou et al., 2001a). In addiCon, forcing the expression of NPC TFs in chick embryos induced 
the corresponding NPC idenCty throughout the NT, suggesCng that TFs also repress the gene 
expression programs of non-adjacent progenitor domains to impose their specific idenCty (Kutejova 
et al., 2016; Nishi et al., 2015). This has led to the idea that molecular disCnct progenitor domains are 
established by a de-repression mechanism involving, in the ventral NT, 4 TFs: Olig2, Nkx2-2, Irx3, Pax6 
downstream of Shh signalling that act by repressing alternaCve fates to allow the execuCon of a 
specific cell fate programme (Figure 2B). In this view the dynamics of the transcripConal network 
convert the graded signalling inputs into the discrete NPC idenCCes and involves broadly acCng 
acCvaCng inputs counteracted by spaCally regulated transcripConal repressors (Cohen et al., 2014) 
(Figure 2D, E).  
 

3.2.2 Dorsal neural tube 
In the dorsal spinal cord, 6 disCnct domains of NPC, dorsal progenitor (dp1) 1-dp6, are established (Lai 
et al., 2016) (Figure 2A). Whilst BMP and Wnt have been shown to induce dorsal populaCons, the GRN 
of the dorsal NT is less well characterized, partly due to the redundancy of the ligands. Overexpression 



studies have shown that BMP induces Pax6, Msx1, Msx2 expression in the dorsal part of the NT 
(Timmer et al., 2002) through the canonical Bmpr1-Smad1/5 pathway (Dréau et al., 2011; Hazen et al., 
2012, 2011). Simultaneously, BMP represses intermediate proteins such as Dbx1-2, Cash1 and Atoh1 
TFs (Hazen et al., 2011; Timmer et al., 2002). The duraCon of BMP signalling plays a role in se�ng 
expression boundaries (Tozer et al., 2013). However, different dose-response experiments suggested 
that concentraCon and duraCon of the signal only alter the number of cells converted to a specific fate 
and does not enCrely prevent the emergence of any cellular state (Andrews et al., 2017). This 
discrepancy can be explained by the presence of several disCnct BMP ligands that, rather than acCng 
as a single morphogen, exhibit specific acCviCes in regulaCng different dorsal progenitor idenCCes 
(Andrews et al., 2018, 2017; Dréau and Marz, 2013). 
 
A model has been proposed in which the dorsal NP domains are first subdivided into two classes 
comprising 2-3 domains each (Andrews et al., 2018). Subsequently, varying temporal exposure to 
BMPs may disCnguish these progenitor idenCCes (Tozer et al., 2013). Downstream of BMP signalling, 
different bHLH TFs are expressed in a domain-specific fashion and exhibit cross-repressive interacCons. 
For instance, cross regulaCon between Atoh1 and Neurog1 specifies the dp1-2 boundary, and they 
restrict Ascl1 to dp3-5 (Gowan et al., 2001). In addiCon, P�1a induces Pax2 in dp4 while suppressing 
TFs such as Tlx1/3 in dp5, via Prdm13 (Chang et al., 2013). Wnt signalling also promotes the sustained 
expression of dorsal TFs such as Pax3, which in turn enhances its own expression (Moore et al., 2013).  
 

3.3 Morphogen responsive Cis-Regulatory Elements 
CREs are the regions of non-coding genome that contain binding moCfs for signalling pathway effectors 
and TFs that regulate gene expression (Davidson, 2010). Work in the ventral neural tube has revealed 
that CREs integrate three types of inputs to select neural progenitor specific gene expression: broad 
acCvators that promote gene expression in all neural progenitors; GliA and GliR input that introduces 
a spaCal polarisaCon along the dorsal-ventral axis; and cell type specific repressors, responsible for the 
acquisiCon and commitment to a domain specific gene expression program (Figure 2E). The broad 
acCvators appear to include Sox2, which binds at CREs (Peterson et al., 2012), facilitaCng expression 
of NPC idenCty genes and resulCng in a chromaCn landscape that is broadly accessible across all NPCs 
(Delás et al., 2023). AddiConal steps are then responsible for determining the specific NPC gene 
expression programme that is acCvated in a progenitor domain. First, different levels of Shh signalling 
along the DV axis results in different levels of GliA and GliR proteins. These bind to moCfs within CREs 
of NPC idenCty genes conferring a DV order to expression paAerns (Oosterveen et al., 2012; Peterson 
et al., 2012). The expression of NPC idenCty genes, which in turn act as transcripConal repressors, bind 
to moCfs within the accessible CREs to regulate expression of alternaCve fate genes (Kutejova et al., 
2016; Nishi et al., 2015). As a consequence of the differenCal acCvaCon and binding of these repressive 
TFs at CREs, the specific NPC gene expression programme is selected (Figure 2F). 
 
The excepCon to the differenCal binding mechanism is the ventral most p3 domain, which displays a 
disCnct chromaCn landscape. This differenCal accessibility is established by the pioneer TF FoxA2 
(Delás et al., 2023) (Figure 2F). As shown by lineage tracing (Delás et al., 2023; Dessaud et al., 2007; 
Erskine et al., 1998; Kicheva et al., 2014) the process of p3 fate acquisiCon also highlights the 
importance of prior gene expression (such as FoxA2) on cell fate specificaCon. Despite these findings 
idenCfying how the chromaCn landscape is iniCated in NPCs during idenCty acquisiCon, it remains 



unclear how CREs regulate gene expression of NPC idenCty genes throughout neurogenesis and into 
gliogenesis in the spinal cord. 
 

3.4 Precision of paGerning 
The boundaries between the 11 NPC domains are accurately posiConed, with only modest intermixing 
of cell idenCCes. The detailed mechanisms that explain boundary precision are sCll not fully elucidated, 
and different organisms appear to use disCnct strategies. Zebrafish NPCs in the ventral NT exhibit a 
noisy response to Shh and NPCs, with different domain idenCCes iniCally intermingled (Xiong et al., 
2013) (Figure 2G). Cell sorCng, based on a differenCal cadherin-mediated adhesion code ensures 
boundary sharpness (Tsai et al., 2020). In pMN cells, Olig2 represses cadherin pcdh19, lowering the 
heterotypic adhesion between NPCs of different idenCCes and facilitaCng sorCng (Tsai et al., 2020) 
(Figure 2G). This strategy based on cell sorCng might have been employed in teleosts due to the higher 
cellular dispersal compared to amniotes seen during neurulaCon. 
 
There is limited evidence that differences in adhesion are required in amniotes. Some intermixing has 
been observed in physiological condiCons (Kicheva et al, 2014), which becomes more prominent when 
individual components of the GRN are deleted (Figure 2H) (Balaskas et al., 2012; Ericson et al., 1997; 
Exelby et al., 2021; Novitch et al., 2001) . Gene deleCon studies have confirmed that a bistable switch 
between two nodes can explain the choice between mutually exclusive fates, but addiCon of a third 
node to the network, improves the sharpness of the boundary (Exelby et al., 2021; Perez-Carrasco et 
al., 2018). Therefore, boundary precision in amniotes appears to rely on intrinsic dynamics of the GRN.  
Lack of boundary precision might affect axonal trajectories and spinal sensory-motor circuit 
organizaCon (Balaskas et al., 2019) but the degree of precision required for this remains to be 
determined.  

4. Growth and cellular rearrangements  
Aner the NPC specificaCon phase is concluded, the “growth phase” of paAerning begins (Kicheva and 
Briscoe, 2015) (Figure 3A) where it is criCcal that paAern is maintained and adjusts appropriately to 
changes in size. This poses several quesCons: What are the factors involved in Cssue growth and how 
do they influence or are influenced by paAern formaCon? How do paAerns scale with increase in spinal 
cord size within a single animal or across different organisms? An intriguing idea would be that Cssue 
size and paAern scaling is dictated by the number of NMPs incorporated into the spinal cord. In fast 
developing species such as zebrafish, the NMP pool is composed of a finite number of cells (AAardi et 
al., 2018; Steventon et al., 2016). However in mammals the NMP pool persists for longer and is 
replenished by self-renewal (Cambray and Wilson, 2007; Tzouanacou et al., 2009). Altering the 
proporCon of neural versus mesodermal NMP progenitors, as is the case in Tbx6 and Wnt3a null mice, 
while reducing the formaCon of paraxial mesoderm, does not alter the final size of the spinal cord, but 
instead results in the generaCon of ectopic NT-like structures (Chapman and Papaioannou, 1998; 
Takada et al., 1994; Yoshikawa et al., 1997). This supports the view that number of NMPs alone is not 
sufficient to determine NT size (Takada et al., 1994; Takemoto et al., 2011; Yoshikawa et al., 1997). 
Even if number of NMPs does not dictate final size, their conCnuous addiCon to the forming NT, as well 
as the convergent extension of the neural plate (Steventon et al., 2016) contribute to the anisotropy 
of Cssue growth in the rostro-caudal direcCon. Aner NT closure, the mediolateral and dorsoventral 
axes also increase in size and a transient inhibiCon of cell proliferaCon around E8.5 in mouse affects 



the spinal cord mediolateral size, but has no longer an effect on its rostro-caudal length (Bocanegra-
Moreno et al., 2023).  
 
ProliferaCon rates in the spinal cord are similar across DV domains (Kicheva et al., 2014), however it is 
sCll unclear how uniform proliferaCon is regulated by signalling gradients. IrrespecCve of the 
mechanism, morphogens have been suggested to influence the cell cycle (reviewed in (Kuzmicz-
Kowalska and Kicheva, 2021). At later stages (E11 in mouse), the major increase in size happens along 
the DV axis, following an anisotropic paAern across the DV domains (Kicheva et al., 2014; Kuzmicz-
Kowalska and Kicheva, 2021) (Figure 3A). A proporCon of NPCs divide asymmetrically, differenCaCng 
into postmitoCc neurons (see next secCon), causing selecCve progenitor loss. Different domains 
exhibit different neuronal differenCaCon rates, that alter the size of the respecCve progenitor domain 
without affecCng morphogen signalling. However, the different temporal dynamics of differenCaCon 
are sCll unclear. Local factors including gene regulaCon and Notch signalling (Henrique et al., 1995; 
Sagner et al., 2018) are crucial, as is morphogen control of the balance between proliferaCon and 
differenCaCon (Dréau et al., 2014; Gupta et al., 2022; Saade et al., 2017, 2013). Thus, the interplay 
between these levels of regulaCon is likely to be criCcal for disCnct rates of NPC differenCaCon.  
 
A consequence of the domain-specific rates of neurogenesis is the unequal growth of the different 
domains (Figure 3A). This means that paAerns do not scale with size of the NT over Cme (Kicheva et 
al., 2014; Kicheva and Briscoe, 2015). Scaling can also be considered from an interspecies perspecCve, 
as the NT of different species display different growth speeds and dynamics (Kicheva et al., 2014), rates 
of differenCaCon (Delile et al., 2019a; Jang et al., 2022; Rayon et al., 2020, 2021), and final size 
(Steventon and Arias, 2017; Uygur et al., 2016). Despite these differences, paAerning is conserved 
across most vertebrates (Kicheva et al., 2014; Uygur et al., 2016) and is robust to manipulaCons, as 
demonstrated by studies in mice, chicken, zebrafish and zebrafinch (Collins et al., 2018; Kicheva et al., 
2014; Uygur et al., 2016). Understanding how morphogen gradients allow the scaling of size and 
paAerning will improve as parameters such as gradient amplitude, decay length and downstream 
signalling cascade are integrated into computaConal models. Nonetheless, different hypotheses have 
been proposed, among which the existence of an expansion-repression mechanism that regulates 
morphogen gradient amplitude and the requirement for two opposing gradients (Ben-Zvi and Barkai, 
2010; Collins et al., 2018; Kicheva and Briscoe, 2015; Shilo and Barkai, 2017; Zagorski et al., 2017).  
 
In conclusion, paAerns are mostly established early in embryogenesis, when the Cssue is smaller in 
size. Therefore, the translaCon of the morphogen signal into gene expression is more efficient and 
precise at smaller scales, since the morphogen concentraCon difference is the highest the closest to 
its source. In addiCon, the early establishment of paAerning followed by a growth phase provides 
opportunity for compensaCon in case of paAerning errors (Kicheva and Briscoe, 2015).  

5. Ini.a.on of neuronal differen.a.on 
 
The producCon of neurons from each of the progenitor domains depends on a cascade of signalling 
and morphogeneCc events, resulCng in the asymmetric division of NPCs, with daughter progenitor 
cells remaining in the medial ventricular zone (VZ), while the differenCated daughters delaminate, 
migraCng laterally into the outer layer of the NT (Figure 3B) (Alaynick et al., 2011; Jessell, 2000; Leber 
and Sanes, 1995; Lee and Pfaff, 2001).  



 

5.1 Interkine=c nuclear movements at the onset of differen=a=on 
One of the first events of neurogenesis is the movement of cells out of the VZ. The onset of 
differenCaCon coincides with a decrease in the amplitude of Shh signalling (Saade et al., 2013) and is 
a striking example of an interplay between cell movement and signalling during cell fate decisions. 
During the early phase of NT development, divisions are predominantly symmetric and result in the 
expansion of the progenitor pool (Saade et al., 2013). NPCs display IKNM during the cell cycle resulCng 
in mitosis at the apical ventricular zone and DNA synthesis basally (Figure 3B) (Bocanegra-Moreno et 
al., 2023; Kasioulis and Storey, 2018; Sauer, 1935). NPCs in the VZ are maintained in an epithelial sheet 
by adherens juncCons that link progenitors at their apicolateral surfaces (Dady et al., 2012; HaAa et 
al., 1987; HaAa and Takeichi, 1986) and b1 integrin that aAach cells to the basal surface (Long et al., 
2016). N-cadherin at apical juncCons connects neighbouring NPCs (Miyamoto et al., 2015) and is 
required for NPCs to remain in the VZ (Das and Storey, 2014a; Rousso et al., 2012). At the onset of 
differenCaCon, FoxP2/4 and Neurog2 expression promotes disassembly of cadherin complexes, 
resulCng in differenCaCng cells leaving the progenitor zone (Das and Storey, 2014a; Rousso et al., 
2012). Live imaging studies indicate that delaminaCon happens through apical abscission (Figure 3C). 
In this process, N-cadherins at the apical surface are disassembled and actomyosin cables begin to 
constrict, cu�ng off the region containing the primary cilium, which is len behind on the apical side 
of the neuroepithelium as the differenCaCng cell leaves the VZ. The loss of the apical cilium renders 
the delaminated cell unable to respond to Shh signalling, contribuCng to differenCaCon (Das et al., 
2012; Das and Storey, 2014b; Toro-Tapia and Das, 2020). 
 

5.2 Breaking the paGern: Notch mediated lateral inhibi=on driving neurogenesis 
Neuronal differenCaCon is asynchronous extending over several days in mouse and more than a week 
in human. The decision of a progenitor to differenCate relies on local communicaCon between 
progenitors, mediated via the Delta-Notch pathway that balances differenCaCon and maintenance of 
a progenitor pool. RetenCon of progenitor idenCty occurs via acCvaCon of the transmembrane Notch 
receptor, promoCng expression of Hairy/Enhancer of split (Hes) family TFs in NPCs, and repression of 
pro-neural genes such as Neurog2 and Ascl1 (Bertrand et al., 2002; Kobayashi and Kageyama, 2014; 
Ohtsuka et al., 1999; Shimojo et al., 2011). Cells commi�ng to differenCate express the Delta ligand 
and down regulate expression of Hes TFs (Akai et al., 2005; Appel and Eisen, 1998; Chitnis et al., 1995; 
Henrique et al., 1995). Delta-like ligands are upregulated by pro-neural bHLH TFs Neurog2, Ascl1 
(Henke et al., 2009) reinforcing neuronal commitment and Hes downregulaCon. Hes TFs exhibit 
negaCve autoregulaCon, resulCng in an oscillatory and asynchronous paAern of their expression (Biga 
et al., 2021; Imayoshi et al., 2013; Manning et al., 2019). This property allows individual NPCs to 
respond differently to the same sCmulus at any given Cme and is presumed to ensure an appropriate 
balance of self-renewal and differenCaCon. However, it remains unclear how the appropriate rate of 
neuronal differenCaCon and delaminaCon of progenitors from the VZ is co-ordinated. Zebrafish studies 
suggest that upon reaching a threshold of local cell density, NPCs undergo a change in cell shape and 
are extruded from the VZ (Hiscock et al., 2018). ComputaConal modelling also support the importance 
of mechanical constraints for this process (Guerrero et al., 2019). In addiCon, zebrafish studies suggest 
that the heterotypic adhesion code among different NP domain cells might facilitate their 
delaminaCon (Rousso et al., 2012; Tsai et al., 2020). Future studies will idenCfy the link between the 
local scale of Notch-Delta regulaCon of differenCaCon to a Cssue level, which is present across the DV 



axis of the spinal cord. Micro-domains of Notch-delta acCvity have been idenCfied (Biga et al., 2021) 
and idenCfying how these relate to domain specific Cming of differenCaCon across the spinal cord will 
be criCcal to tying these observaCons together.  
 

5.3 bHLH paGerns  
For the correct specificaCon of disCnct subtypes of neurons in the spinal cord, the DV cellular idenCty 
must be communicated during differenCaCon to define the idenCty of the newly generated neuron. 
bHLH pro-neural genes, such as Neurog1-3, Ascl1 and the Atoh family, are required for the first step of 
neuronal differenCaCon (Figure 3D) (Alaynick et al., 2011; Sagner and Briscoe, 2019). These pro-neural 
TFs drive neuronal differenCaCon by remodelling chromaCn landscape either acCng alone as pioneer 
factors (Aydin et al., 2019), or in concert with chromaCn remodelling complexes (Păun et al., 2023). 
Pro-neural genes subsequently acCvate neuronal LIM-homeodomain genes specific to the various 
progenitor DV idenCCes (Figure 3D) (Aydin et al., 2019; Borromeo et al., 2014).  Gain and loss of 
funcCon experiments reveal that as well as promoCng differenCaCon of NPCs to neurons, pro-neural 
TFs also contribute to the generaCon of disCnct subtypes of neurons (Borromeo et al., 2014; Chang et 
al., 2013; Gowan et al., 2001; Mizuguchi et al., 2006; Parras et al., 2002; Wildner et al., 2006). However, 
given the redundant expression of pro-neural genes throughout the spinal cord, as demonstrated by 
the requirement of Ascl1 for both dl3-dp5 neurons in the dorsal spinal cord and V2a/b in the ventral 
spinal cord (Alaynick et al., 2011; Sagner and Briscoe, 2019), addiConal mechanisms to establish 
neuronal diversity are required.  
 
ChIP-seq experiments have idenCfied that the same TFs that impose neural progenitor domain idenCty 
by repressing alternate NPC fates, also repress gene expression associated with alternaCve neuronal 
fates. This acts to ensure differenCaCon to the correct neuronal subtype (Figure 3E) (Kutejova et al., 
2016; Nishi et al., 2015). This is exemplified in motor neuron differenCaCon, where expression of pMN 
marker Olig2 peaks prior to neuronal differenCaCon, repressing Hes5 (Sagner et al., 2018) and 
alternate neuronal programs helping establish MN formaCon. Moreover, downstream of pro-neural 
TFs, a transcripConal code of LIM genes appears to transmit NPC idenCty to neurons (Figure 3E).  For 
instance, putaCve V2a neurons express Lhx3, downstream of the pro-neural gene Ascl1, forming a 
tetrameric protein complex with LDB1 (a nuclear Lim interactor). Lhx3-LDB1 complexes acCvate Chx10, 
criCcal for the differenCaCon to V2a neurons. However, in the adjacent MNs, Lhx3 and Isl1, 
downstream of the pro-neural factor Neurog2, form a hexameric complex with LDB1, which binds to 
disCnct moCfs, acCvaCng Mnx1 specifying MN differenCaCon (Figure 3E) (Lee et al., 2008; Thaler et 
al., 2002). Despite this, the precise mechanisms by which heterogeneity in gene expression profiles 
can acCvate the next cell state whilst decommissioning the gene regulatory mechanisms that stabilised 
the previous cell state is sCll unclear. While Olig2 and Neurog2 both act to specify pMN and MN fate, 
they also display cross-repressive interacCons (Lee et al., 2005). Thus, how Neurog2 drives 
differenCaCon by overcoming elevated levels of Olig2 is not yet clear. One putaCve mechanism is by 
post-translaCon modificaCons (PTMs) on Olig2 (Sun et al., 2011), Ascl1 (Ali et al., 2014) and Neurog2 
(Ali et al., 2011) leading to their degradaCon by Cyclin dependant Kinase (CDK) mediated 
ubiquiCnaCon. However, it is not clear how PTMs on NPC and pro-neural genes are controlled in 
individual cells within a Cssue to ensure the correct balance of differenCaCon and self-renewal in NPCs. 
Moreover, idenCfying how precise paAerns of neural differenCaCon occur will require understanding 
mulCple layers of gene regulaCon. For instance, how do differenCal CRE usage and accessibility, TF 



binding, and changes in the 3D chromaCn organisaCon come together to establish gene expression 
paAerns that allow a small set of pro-neural genes to coordinate the diversity spinal cord neurons.  
 

6. More than the spa.al pa2ern: diversifying neural tube cell types over 
.me 

 

6.1 Neuronal temporal paGerning 
The spatial patterning of NPCs cannot account for the full diversity of neuronal subtype identity in the 
mature spinal cord. Numerous studies have provided evidence for temporally stratified neuronal 
production across the nervous system and the spinal cord (Benito-Gonzalez and Alvarez, 2012; Deska-
Gauthier et al., 2019; Hayashi et al., 2018; Hollyday and Hamburger, 1977; Müller et al., 2002; Sagner 
et al., 2021; Stam et al., 2011). Temporal patterning appears to be domain intrinsic, adding complexity 
to the spatial organization and increasing the variety of neurons produced (Figure 4Ai, ii). A well-
documented example of how temporal patterning contributes to establish a spatial and functional 
neuronal pattern is given by the generation of motor columns, containing molecularly distinct 
subtypes of MN that innervate different sets of body muscles (Francius and Clotman, 2014; Tsuchida 
et al., 1994) (Figure 4B). Lateral motor columns (LMC), that innervate limb musculature (Dasen et al., 
2008, 2005; Dasen and Jessell, 2009), are divided into lateral LMC (LMCl) and medial LMC (LMCm) 
which innervate distinct targets and have different gene expression profiles. Birth dating studies 
identified that LMCl is born after LMCm and migrate past them to reach their lateral most position 
(Hollyday and Hamburger, 1977). The early born LMCm expresses Isl1, downstream of Onecut (Roy et 
al., 2012) and expresses Raldh2, triggering RA secretion (Sockanathan et al., 2003; Sockanathan and 
Jessell, 1998) (Figure 4B). RA signalling to differentiating MNs results in the expression of Lhx1 in late 
born MNs and their specification as LMCl (Francius and Clotman, 2010; Kania and Jessell, 2003; Roy et 
al., 2012; Tsuchida et al., 1994). LMCl neurons also express miRNA9, which inhibits Onecut-mediated 
induction of Isl1 (Luxenhofer et al., 2014) (Figure 4B). However, the precise regulatory events 
downstream of RA and upstream of the Isl1/Lhx1 cross-repressive events are still unclear, as is the full 
temporal sequence and the lineage relationships between the different motor columns in vivo. In 
addition, differential cadherin expression appears to drive the segregation of MNs into different motor 
columns in the chick (Fredette and Ranscht, 1994; Price et al., 2002), prompting questions about the 
interplay between temporal progression and the adhesion code.  
 
Single cell RNA sequencing datasets and EdU birthdaCng studies in vitro and in vivo describe a shared 
temporal TF (tTF) code, which drives the sequenCal producCon of diverse neuronal subtypes, further 
parCConing the major neuronal classes (Delile et al., 2019b; Sagner et al., 2021) (Figure 4Ai, ii). Early, 
intermediate, and late-born progenitors and neurons express characterisCc arrays of tTF that is 
common throughout the CNS and conserved across species. Onecut TFs are detected in the earliest-
born neurons across all DV domains, intermediate neurons express Pou2f2 and ZTx2–4, while late-
born neurons express Nfia/b/x, NeuroD, and Tcf4 (Sagner et al., 2021) (Figure 4Ai). Notably, two V2a 
interneuron subtypes born at different Cmes and characterised by ZTx3 or Nfib expression 
differenCally control MNs connected to forelimbs and hindlimbs, (Hayashi et al., 2018), highlighCng 
the role of the temporal code in specifying funcConal diversity.  
 



Both NPCs and differenCated neurons possess a temporal paAerning code, comprised of different tTFs 
(Sagner et al., 2021) ((Figure 4Ai). Further study is required to idenCfy whether these tTFs regulate 
each other's expression and whether the progenitor code directly regulates the neuronal code. In 
Drosophila neuroblasts, which are equivalent to NPCs, sequenCally expressed tTFs define idenCty 
windows to generate specific neuronal progeny (Doe, 2017; Maurange, 2020). In addiCon, further 
lineage tracing studies will be needed to elucidate the lineage relaConship between sequenCally born 
neurons and their progenitors.  
 
 

6.2 Adding glia 
6.2.1 Gliogenic switch 
The early phase of neurogenesis in the CNS is followed by a period of glial cell producCon (Cochard et 
al., 1995; Kessaris et al., 2001; Miller and Gauthier, 2007; Qian et al., 2000) (Figure 4C). During the 
gliogenic phase, astrocytes and oligodendrocytes are produced (Cochard et al., 1995; Gao et al., 2014; 
Leber et al., 1990), which provide physical, funcConal and metabolic support to neurons. The transiCon 
in cell fate competency of NPCs from neural to glial is termed the 'gliogenic switch' (Kessaris et al., 
2001; Miller and Gauthier, 2007) (Figure 4Ci), the Cming of which is species and region-specific 
(Belmonte-Mateos and Pujades, 2022; Miller and Gauthier, 2007; Rowitch, 2004a; Rowitch and 
Kriegstein, 2010). In the mouse spinal cord, gliogenesis starts at E12-12.5 with the producCon of 
oligodendrocyte precursors (OPCs) in the pMN domain (Wu et al., 2006a; Zhou et al., 2001b; Zhou and 
Anderson, 2002a). In human embryos gliogenesis commences at Carnegie Stage (CS) 15 (GestaConal 
Week -GW- 6) in ventral region and CS18 (GW7) in dorsal regions (Dady et al., 2022; Deneen et al., 
2006; Rayon et al., 2021). 
 
The gliogenic switch has been suggested to be a cell-intrinsic restricCon in progenitor potenCal, as 
heterochronic transplantaCon of NPCs from gliogenic into neurogenic spinal cord failed to give rise to 
neurons (Mukouyama et al., 2006). The mechanisms driving this competence shin and the relaConship 
to the temporal programme of neurogenesis are not fully understood, however increasing evidence 
highlights an interplay of intrinsic, extrinsic, and epigeneCc signals. Cascades of TFs have been linked 
to this transiCon (Laug et al., 2018; Miller and Gauthier, 2007). At the end of the neurogenic phase, 
Neurog1 and Neurog2 expression in NPCs declines reducing neuronal producCon (Sun et al., 2001), 
while Nfia/b (Deneen et al., 2006), Sox9 (Stolt et al., 2003), GLAST (Shibata et al., 1997), COUP-TFII 
(Naka et al., 2008), AZ3 and Runx2 (Tiwari et al., 2018) and other pro-gliogenic genes start being 
expressed (Figure 4Ci). Nfia and Sox9 are two well studied regulators of the gliogenic switch, acCvaCng 
several glial-specifc genes (Molofsky et al., 2013) (Figure 4Cii). Loss- and gain-of-funcCon experiments 
demonstrated that Nfia/b and Sox9 are necessary and sufficient to regulate glia producCon (in vivo 
and in vitro) and to terminate neurogenesis in a Cmely manner (Caiazzo et al., 2015; Deneen et al., 
2006; Finzsch et al., 2008; Neves et al., 1999; ScoA et al., 2010; Shu et al., 2003; Stolt et al., 2003; 
Tchieu et al., 2019). Nfia expression is regulated by Sox9 and Brn2 (Glasgow et al., 2017; Kang et al., 
2012; Molofsky et al., 2013) (Figure 4Cii), however, it is unclear what determines acCvaCon of Sox9 
and further studies will be needed to elucidate the GRNs underlying this competence shin.  
 
Different mechanisms regulate the producCon of different glial cells. Sox9 promotes astrocyCc 
differenCaCon together with Nfia (Akdemir et al., 2020; Kang et al., 2012; Molofsky et al., 2013). 



However, in OPCs, Sox9 promotes differenCaCon by cooperaCng with Olig2 and Sox10 (Küspert et al., 
2011; Lopez-Anido et al., 2015; Stolt et al., 2002), which in turn inhibits Nfia (Glasgow et al., 2014) to 
prevent astrogenesis (Stolt et al., 2005) (Figure 4Cii). In OPCs, Sox9 expression decreases, while SOX10 
remains expressed in mature oligodendrocytes (Finzsch et al., 2008; Stolt et al., 2003, 2002).  
 
NOTCH signalling is a key extrinsic factor in glial producCon (Bansod et al., 2017; Taylor et al., 2007), 
putaCvely upstream of Sox9/Nfia expression (MarCni et al., 2013; Taylor et al., 2007) (Figure 4Cii). 
However, studies in zebrafish and chick suggested that Notch might facilitate the gliogenic switch by 
maintaining the progenitor pool needed to produce glia (Deneen et al., 2006; Park and Appel, 2003). 
In addiCon, some studies have begun to uncover the role of epigeneCc factors in glial fate control, such 
as Cmely DNA demethylaCon or histone acetylaCon of glial genes (Cheng et al., 2011; Fan et al., 2005; 
Koreman et al., 2018; Zhang et al., 2016), yet the detailed mechanisms remain poorly understood.  
 

6.2.2 Oligodendrocytes 
Oligodendrocytes are the myelinaCng cells of the spinal cord and are produced from a proliferaCve 
intermediate Oligodendrocyte Progenitor Cell (OPC). OPCs are one of the most migratory cell types in 
the spinal cord that rapidly disperse radially and then dorsoventrally from their site of origin (Rowitch, 
2004b; Zhou et al., 2000). This results in their broad distribuCon in the mature spinal cord (Altman, 
1966). Several mechanisms have been implicated in their migraCon (Xia and Fancy, 2021), from cell 
autonomous expression of Sox9/Sox10 (Finzsch et al., 2008), regulaCon of cellular polarity (Miyamoto 
et al., 2008), extracellular cues (Tsai et al., 2002), chemoaAracCon (Tsai et al., 2003) and Wnt-mediated 
movement along blood vessels (Tsai et al., 2016).  
 
The widespread distribuCon of OPCs fuelled an ongoing debate about the locaCon of their origin 
(Richardson et al., 2006; Spassky et al., 2000) (Figure 4D). Their broad spaCal locaCon iniCally favoured 
the hypothesis that OPCs originated from all DV regions of the embryonic VZ (Altman, 1966). However, 
in vivo experiments suggested they exclusively originated from the ventral spinal cord (Noll and Miller, 
1993; Pringle et al., 1998; Rowitch, 2004b), from the pMN (Sun et al., 2006) or p3 domain (Fu et al., 
2002; Soula et al., 2001). However, other studies indicated mulCple OPC sources (Cameron-Curry and 
Douarin, 1995; Spassky et al., 1998). Cre/Lox lineage tracing and Nkx6 mutant mice studies revealed a 
disCnct second wave of oligodendrocyte producCon from progenitors expressing Pax7 and Dbx1 
located dorsally to the origin of first wave OPCs (Cai et al., 2005; Fogarty et al., 2005; Vallstedt et al., 
2005) (Figure 4D). While the first wave of OPCs appears to be dependent on Shh signaling (Cai et al., 
2005; Orentas et al., 1999; Poncet et al., 1996; Pringle et al., 1996; Richardson et al., 2000; Trousse et 
al., 1995; Wang and Almazan, 2016), the second wave appears to arise independently (Cai et al., 2005; 
Chandran et al., 2003; Kessaris et al., 2004), likely under the regulaCon of other signals (Chandran et 
al., 2003; Grinspan et al., 2000; Gross et al., 1996; Kessaris et al., 2004; Shimizu et al., 2005). The 
signalling histories of these cells as well as the regulaCon of Olig2 in the dorsal spinal cord, far from its 
original ventral domain of expression, remain unclear. Similar uncertainty has emerged regarding OPC 
origins in the brain (Richardson et al., 2006), where different temporal and spaCal waves of OPC 
producCon have been observed (Gorski et al., 2002; Kessaris et al., 2006). Notably, OPCs generated at 
early embryonic Cmes appear to have been lost in adult animals, prompCng quesCons about the 
significance and funcCon of the two waves (Kessaris et al., 2006).  
 



Why does the origin of OPCs maAer? If mature OPCs, originaCng from NPCs exposed to different 
signaling histories (e.g., BMP vs Shh), exhibit indisCnguishable funcCons and characterisCcs, it would 
imply unexpected plasCcity in the downstream response to signals leading to fate convergence. 
AlternaCvely, the divergent lineage histories of these cells might lead to disCnct properCes and roles 
in the mature spinal cord that are currently unappreciated. 
 
The debate over the spaCal origin of OPCs parallels discussions about the lineage potenCal of their 
progenitors (Liu and Rao, 2003, 2004a; Noble et al., 2004) (Figure 4E). Studies in vitro have proposed 
the existence of a glial restricted progenitors (GRP) that produce OPCs and astrocytes, but not neurons 
(Rao et al., 1998; Wu et al., 2002). However, others idenCfied a close lineage connecCon with somaCc 
MNs, consistent with the locaCon of primary OPC wave and shared Olig2 expression requirement 
(Leber et al., 1990; Lu et al., 2002; Takebayashi et al., 2002; Zhou and Anderson, 2002b). Therefore, 
OPCs might arise from bipotent progenitor able to give rise to both MNs and OPCs (MNOP) (Leber et 
al., 1990; Lu et al., 2002; Takebayashi et al., 2002; Xing et al., 2022; Zhou and Anderson, 2002b). 
AlternaCvely, OPCs and MNs could emerge from disCnct pools of pMN progenitors assigned early to 
one of the two lineages (Liu and Rao, 2003, 2004b; Rao and Mayer-Proschel, 1997; ScoA et al., 2021). 
Another possibility is that OPCs originate from disCnct NPCs that acCvate Olig2 expression at later 
developmental Cmes than pMN and arise from a domain neighbouring pMNs (Ravanelli and Appel, 
2015; Wu et al., 2006b). Discrepancies between these studies stem from differences between in vitro 
potenCal and in vivo fate constraints, experimental methods, and analysis Cming. New unbiased 
lineage tracing tools and a detailed Cmeline of embryogenesis will be beneficial in solving these long-
standing quesCons.  
 

6.2.3 Astrocytes 
Astrocytes are the most abundant cells in the CNS and play a vital supporCng role; promoCng 
synaptogenesis, maintaining the blood brain barrier, producing trophic factors and contribuCng to 
homeostasis (Allen and Eroglu, 2017; Verkhratsky and Nedergaard, 2018). Despite their importance, 
the developmental principles behind astrocyCc differenCaCon are sCll far from understood (Akdemir 
et al., 2020; Bayraktar et al., 2015) owing to the paucity of early markers for astrocyte precursor cells 
(APCs). In spinal cord, the earliest marker of APCs is GLAST, which is expressed in mouse as early as 
E11 (Shibata et al., 1997), while GFAP, a mature astrocyte marker, appears aner E15.5 (Andræ et al., 
2001; Eng, 1985).  
 
There is evidence that astrocytes are produced in two waves, first from progenitors in the VZ, and later 
through an intermediate APC in the mantle of the spinal cord (Tien et al., 2012). The two pools of 
astrocytes are produced in a ventral-to-dorsal gradient (Tien et al., 2012; Tsai et al., 2012) that have 
temporally disCnct programmes of gene expression (Chaboub et al., 2016; Molofsky et al., 2013). 
 
Contrary to early suggesCons postulaCng a uniform origin and funcCon of astrocytes throughout the 
CNS, several lines of evidence suggest their funcConal, spaCal and lineage heterogeneity (Bayraktar et 
al., 2015; Zhang and Barres, 2010). Several in vivo studies have shown that, like neuronal subtype 
idenCty, the molecular idenCty and spaCal locaCon of astrocytes depends on their origin (Figure 4F) 
(HochsCm et al., 2008; Sartore� et al., 2022; Tsai et al., 2012; Vue et al., 2014). In the ventral spinal 
cord, the producCon of ventral astrocytes (vAs) from the p0-p3 domains (vA0-vA3) depends on a 
homeodomain transcripConal code, whose components are repurposed once neuronal idenCty is 



established (Figure 4F). For example, the bHLH TF Tal1 is necessary and sufficient for vA2 astrocytes 
by suppressing Olig2 (Muroyama et al., 2005), the combinatorial expression of Pax6 and Nkx6-1 
regulate vA1-vA3 subtype idenCty (HochsCm et al., 2008; Zhao et al., 2014), and Dbx1 controls vA0/V0 
interneuron balance (Sartore� et al., 2022) (Figure 4F). FuncConally, ablaCon of domain-specific 
astrocyte types results in incorrect synaptogenesis (Tsai et al., 2012) and the deleCon of region-specific 
genes (e.g., Sema3a or Kcnj10) in ventral astrocytes caused death of specific classes of MNs and 
abnormal MN circuit organizaCon and electrophysiological properCes (Kelley et al., 2018; Molofsky et 
al., 2014). This evidence suggests lineage-dependent funcConal heterogeneity, which is just starCng to 
be uncovered (Yoon et al., 2017).  
 
Astrocyte lineage relaConships are sCll to be determined (Figure 4E). Studies have proposed the 
existence of a GRP (Hirano and Goldman, 1988; Noble et al., 2004; Rao and Mayer-Proschel, 1997), in 
addiCon to a tripotent progenitor producing MNs, OPCs and astrocytes (Leber et al., 1990; Masahira 
et al., 2006; Rao et al., 1998). However, the evidence showing a common transcripConal programme 
for domain-specific interneurons and astrocytes producCon (Muroyama et al., 2005; Sartore� et al., 
2022) prompts further invesCgaCon into the neuronal and glial lineage relaConships. 

7. Conclusions & Future Perspec.ves 
 
Numerous studies have provided insight into the formaCon and paAerning of the spinal cord, 
highlighCng how an interplay of gene regulaCon, cell movements and Cssue mechanics is criCcal. The 
GRN underlying paAern formaCon has shown how the integraCon of cell intrinsic and extrinsic 
acCvaCng and repressive gene regulatory mechanisms organise cell fate decisions. In the future, 
advances in imaging and sequencing techniques that idenCfy the 3D chromaCn structure will help 
answer fundamental quesCons as to how layers of gene regulaCon are conveyed across the genome 
to produce precise changes in gene expression.  
 
Recent studies have highlighted how the temporal dynamics of gene expression dictate cell 
commitment (Delás et al., 2023; Dessaud et al., 2007; Sagner et al., 2021). Future studies will need to 
account for Cme to explain morphogen response and lineage decisions in the spinal cord. Moreover, a 
high degree of convergence of mulCple embryonic lineages into fewer transcripConally disCnct mature 
cell types has been observed in mouse and Drosophila scRNAseq datasets (Li et al., 2017; Russ et al., 
2021). The combinaCon of detailed molecular knowledge of cell type heterogeneity idenCfied in 
scRNAseq datasets and new unbiased and high-throughput sequencing-based lineage tracing 
techniques will help resolve this complexity.  
 
In addiCon to the molecular signature and histories of the differenCaCng neural cells, cell and Cssue 
mechanics are crucial to explain the spaCal paAerning of the spinal cord. The feedback between 
tension, cytoskeleton and gene expression is just starCng to be uncovered (Matsuda and Sokol, 2021; 
Newman-Smith et al., 2015; Nikolopoulou et al., 2017; Tsai et al., 2022) and new techniques are now 
available to further explore these forces in in vivo systems (Maniou et al., 2022). These 
mulCdimensional data will offer greater power to already exisCng quanCtaCve models describing and 
predicCng NT development (Bocanegra-Moreno et al., 2023; Maizels et al., 2023; PezzoAa and Briscoe, 
2022; M. Sáez et al., 2022). In the future, the integraCon of these into in silico models will help make 
new predicCons and test new hypotheses. Finally, while whilst the broad mechanisms governing spinal 



cord paAerning are conserved across different species, there are species-specific processes that are 
now starCng to be uncovered (Jang et al., 2022; Rayon et al., 2021). Therefore, it will be important to 
elucidate the different strategies employed across the animal kingdom to achieve a final conserved 
paAern. Studying spinal cord paAerning will help gain an understanding of fundamental processes 
through development and in parCcular the integraCon of molecular, cellular and Cssue scale 
mechanisms will uncover the many ways that an organism has to make a paAern.  
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Figure legends 
 
Figure 1: Forma-on of the spinal cord is ini-ated during gastrula-on 
(A) Schema<c of a HH10 chicken embryo (adapted from Rito et al. 2023). Hox paralogous 
groups (PG) are expressed in specific regions across the rostro-caudal axis in the developing 
spinal cord. Wnt/FGF ligands show a gradient of expression that is highest at the tail of the 
embryo, and Re<noic Acid (RA) is expressed in more rostral regions of the spinal cord. Inset 
indicates the spa<al localisa<on of NMPs, pre-neural and neural progenitor cells. (B) Changes 
in cell state and gene expression signatures from NMP to neural following exposure to FGF, 
then RA signalling. (C) (I) Secre<on of BMP ligands from the Lateral Plate mesoderm (LPM) 
and BMP inhibitors creates a gradient of BMP ac<vity across the mediolateral axis of the 
overlying ectoderm. At the medial region of the ectoderm, BMP inhibi<on results in the 
forma<on of neural precursors. (II) Bending of the neural ectoderm starts at the Median Hinge 
Point (MHP) where wedge-like cells are observed. More dorsally, the NT bends at the 
Dorsolateral hinge points (DLHP). (III) The neural tube closes, resul<ng in the forma<on of the 
hollow neural tube. (E) Secondary neurula<on is ini<ated as neural precursors converge and 
condense (I). (II) Neural precursors in the tail subsequently epithelialize and form the 
medullary cord. (III) The medullary cord undergoes cavita<on, which creates the lumen of the 
neural tube.  
 
Figure 2: Pa@erning of the dorsoventral axis of the spinal cord 
A) Schema<c cross-sec<on of an embryonic spinal cord with progenitor (leZ) and neuronal 
(right) DV domains. NT progenitors are pa\erned into 11 domains along the DV axis (dp1-dp6, 
p0-p2, pMN, p3), each of which gives rise to dis<nct neuronal subtypes (dI1-dI6, V0, V1, V2a, 
V2b, MNs, V3), characterized by the expression of specific TFs. FP, floor plate; RP, roof plate. 
B) Phase portrait depic<ng levels and dura<on of Shh signalling for the induc<on of Pax6/Irx3, 
Olig2 and Nkx2.2 in NPCs. Nkx2.2 expression requires higher levels and dura<on of Shh. C) 
Sequen<al induc<on of NPCs markers in the ventral spinal cord. Increasing levels/dura<on of 
Shh signalling result in the sequen<al induc<on of first Olig2 (orange) and, later, Nkx2.2 
(yellow), gradually restric<ng the Pax6/Irx3 domain (grey). D) Ac<va<on by Sox2 and 
posi<ve/nega<ve inputs from GliA/GliR results in cross-repressive interac<ons between 
ventral domain-specific TFs Nkx2.2, Olig2, Pax6 and Irx3. Arrows, ac<va<ng interac<ons; T 
bars, repressive interac<ons. (see Delás and Briscoe, 2020). E) Three types of inputs are 
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integrated into CREs: broad ac<vators that promote mul<ple fates (Sox2), signalling inputs 
(GliA/GliR), and cell type specific repressors (Olig2, Nkx2.2, etc), which repress all alterna<ve 
fates. F) Most of the ventral domains are established by differen<al binding of domain-specific 
TFs on a shared chroma<n landscape. However, the ventral-most p3 domain exhibits dis<nct 
chroma<n accessibility, established by the pioneer TF FoxA2. G)  Zebrafish NPCs are spa<ally 
intermixed downstream of a heterogeneous response to Shh. NPCs sort into precise domains 
with sharp boundaries due to a specific adhesion code, controlled by the GRN components. 
H) Boundary precision in amniotes is encoded in the GRN dynamics, as shown by phenotypes 
caused by altera<ons in the nodes or edges of the network (e.g., Pax6-/-). 
 
 
Figure 3: Growth and diversifica-on of cell types in the spinal cord.  
(A) (I) Spinal cord development can be separated into two dis<nct phases. During the 
specifica<on phase, domains of neural progenitor cells (NPCs) are specified and grow in 
propor<on with <ssue size. In the growth phase, differen<a<on of NPCs occurs at domain 
specific rates, resul<ng in differences in domain propor<ons over <me. In general, ventral 
NPCs, par<cularly MN progenitors, undergo differen<a<on at a higher rate than their dorsal 
counterparts. (II) Graphs depic<ng the change in propor<on of NPCs and expansion of 
neurons with a ventral iden<ty. (B) Interkine<c nuclear movement of NPCs in the VZ. Nuclei 
of cells in G1/S-phase are located basally. They move toward the apical surface during G2 
phase and undergo mitosis at the apical surface. During asymmetric cell division, the 
differen<a<ng daughter cell (blue) undergoes apical abscission (C). The differen<a<ng cell 
detaches from the apical membrane and leaves the VZ from the basal surface. Apical 
abscission is outlined in (C)  (1) NPCs are a\ached to the apical surface by N-cadherins. During 
apical abscission (2), N-cadherins break down and actomyosin cables contract, leaving behind 
the primary cilium (3). (D) Cell type iden<ty that is ini<ated in NPCs is transmi\ed to neurons 
during differen<a<on by a spa<al code of bHLH pro-neural genes, and LIM-Homeodomain 
genes. (E) NPC iden<ty is transmi\ed to neurons, ini<ally by the repression of alternate 
neuronal iden<<es and ac<va<on of specific downstream differen<a<on programs by NPC 
iden<ty genes, resul<ng in the expression of specific neuronal iden<ty genes.  
 
 
Figure 4: Temporal pa@erning of the spinal cord: neurons and glia 
A) Conserved temporal pa\erning of neural progenitors and neurons throughout the CNS is 
characterized by the expression of specific temporal transcrip<on factors (I). In the spinal cord 
early born neurons (orange) are ini<ally located laterally compared to mid and late born ones 
(II). M, medial; L, lateral; D, dorsal; V, ventral. (Adapted from Sagner et al, 2021 and Delás and 
Briscoe, 2020) B) Spinal motor columns as an example of temporal pa\erning and related 
func<onal heterogeneity. The lateral motor column is divided in medial (LMCm), born first, 
and lateral (LMCl), born later, characterized by specific gene expression shown in the inset. C) 
Neurogenesis and gliogenesis are characterized by a specific and gradually transi<oning gene 



expression program (I). (II) The GRN controlling the gliogenic switch and the further 
specifica<on of glial cells into oligodendrocyte precursor cells (OPCs) and astrocyte precursor 
cells (APCs). D) Schema<cs of OPC origin from different sources: early OPCs derive from Olig2+ 
ventral NPCs (orange) and late OPCs from Pax7/Dbx1+ dorsal NPCs (green). By E18 the two 
popula<ons of OPCs are spa<ally intermingled in the NT. E) Diagrams depic<ng different 
models of neuron and glia lineage rela<onships. MNOP, motor neuron oligodendrocytes 
progenitors; GRP, glial restricted progenitor; IN, interneurons; MN, motor neurons; OPC, 
oligodendrocyte precursor cells; APC, astrocyte precursor cells. F) Schema<c cross-sec<on of 
a ventral spinal cord depic<ng the diversifica<on of astrocytes subtypes (vA0-vA3) based on 
their domain of origin. Cross-repressive interac<ons and combinatorial expression of TFs in 
NPCs (leZ) creates a transcrip<onal code driving molecular iden<ty acquisi<on and spa<al 
loca<on in astrocytes. 
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