s12977-016-0276-7.pdf (2.73 MB)

Expression levels of Fv1: effects on retroviral restriction specificities

Download (2.73 MB)
journal contribution
posted on 20.08.2020, 16:38 by Wilson Li, Melvyn W Yap, Vicky Voss, Jonathan P Stoye
BACKGROUND: The mouse protein Fv1 is a factor that can confer resistance to retroviral infection. The two major Fv1 alleles from laboratory mice, Fv1 (n) and Fv1 (b) , restrict infection by different murine leukaemia viruses (MLVs). Fv1(n) restricts B-tropic MLV, but not N-tropic MLV or NB-tropic MLV. In cells expressing Fv1(b) at natural levels, only N-MLV is restricted, however restriction of NB-MLV and partial restriction of B-MLV were observed when recombinant Fv1(b) was expressed from an MLV promoter in Fv1 null Mus dunni tail fibroblast cells. To investigate the relationship between expression level and restriction specificity we have developed new retroviral delivery vectors which allow inducible expression of Fv1, and yet allow sufficient production of fluorescent reporter proteins for analysis in our FACS-based restriction assay. RESULTS: We demonstrated that at concentrations close to the endogenous expression level, Fv1(b) specifically restricts only N-MLV, but restriction of NB-MLV, and to a lesser extent B-MLV, could be gained by increasing the protein level of Fv1(b). By contrast, we found that even when Fv1(n) is expressed at very high levels, no significant inhibition of N-MLV or NB-MLV could be observed. Study of Fv1 mutants using this assay led to the identification of determinants for N/B tropism at an expression level close to that of endogenous Fv1(n) and Fv1(b). We also compared the recently described restriction activities of wild mice Fv1 proteins directed against non-MLV retroviruses when expressed at different levels. Fv1 from M. spretus restricted N-MLV, B-MLV and equine infectious anaemia virus equally even at low concentrations, while Fv1 from M. macedonicus showed even stronger restriction against equine infectious anaemia virus than to N-MLV. Restriction of feline foamy virus by Fv1 of M. caroli occurred at levels equivalent to MLV restriction. CONCLUSIONS: Our data indicate that for some but not all Fv1 proteins, gain of restriction activities could be achieved by increasing the expression level of Fv1. However such a concentration dependent effect is not seen with most Fv1s and cannot explain the recently reported activities against non-MLVs. It will be interesting to examine whether overexpression of other capsid binding restriction factors such as TRIM5α or Mx2 result in novel restriction specificities.