rsob.150178.pdf (1.45 MB)
Evidence for cohesin sliding along budding yeast chromosomes
journal contribution
posted on 2020-09-07, 11:31 authored by Maria Ocampo-Hafalla, Sofía Muñoz, Catarina P Samora, Frank UhlmannThe ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2-Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription.
History
Publisher DOI
Usage metrics
Categories
Keywords
Saccharomyces cerevisiaecohesingenome stabilitysister chromatid cohesiontranscriptionCell Cycle ProteinsChromosomal Proteins, Non-HistoneChromosome SegregationChromosomes, FungalCysteine SynthaseDNA ReplicationHSP70 Heat-Shock ProteinsMitochondrial ProteinsModels, GeneticMonosaccharide Transport ProteinsSaccharomyces cerevisiae ProteinsSaccharomycetalesTranscriptional ActivationUhlmann FC0011980601 Biochemistry and Cell Biology0605 Microbiology1107 Immunology