The Francis Crick Institute
gkac300 (1).pdf (2.47 MB)

Efficient golden gate assembly of DNA constructs for single molecule force spectroscopy and imaging.

Download (2.47 MB)
journal contribution
posted on 2022-07-28, 08:22 authored by Nicholas AW Bell, Justin E Molloy
Single-molecule techniques such as optical tweezers and fluorescence imaging are powerful tools for probing the biophysics of DNA and DNA-protein interactions. The application of these methods requires efficient approaches for creating designed DNA structures with labels for binding to a surface or microscopic beads. In this paper, we develop a simple and fast technique for making a diverse range of such DNA constructs by combining PCR amplicons and synthetic oligonucleotides using golden gate assembly rules. We demonstrate high yield fabrication of torsionally-constrained duplex DNA up to 10 kbp in length and a variety of DNA hairpin structures. We also show how tethering to a cross-linked antibody substrate significantly enhances measurement lifetime under high force. This rapid and adaptable fabrication method streamlines the assembly of DNA constructs for single molecule biophysics.


Crick (Grant ID: 10119, Grant title: Molloy FC001119)