The Francis Crick Institute
Browse
gkac300 (1).pdf (2.47 MB)

Efficient golden gate assembly of DNA constructs for single molecule force spectroscopy and imaging.

Download (2.47 MB)
journal contribution
posted on 2022-07-28, 08:22 authored by Nicholas AW Bell, Justin E Molloy
Single-molecule techniques such as optical tweezers and fluorescence imaging are powerful tools for probing the biophysics of DNA and DNA-protein interactions. The application of these methods requires efficient approaches for creating designed DNA structures with labels for binding to a surface or microscopic beads. In this paper, we develop a simple and fast technique for making a diverse range of such DNA constructs by combining PCR amplicons and synthetic oligonucleotides using golden gate assembly rules. We demonstrate high yield fabrication of torsionally-constrained duplex DNA up to 10 kbp in length and a variety of DNA hairpin structures. We also show how tethering to a cross-linked antibody substrate significantly enhances measurement lifetime under high force. This rapid and adaptable fabrication method streamlines the assembly of DNA constructs for single molecule biophysics.

Funding

Crick (Grant ID: 10119, Grant title: Molloy FC001119)

History

Usage metrics

    The Francis Crick Institute

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC