The Francis Crick Institute
Browse
1-s2.0-S2405844024074231-main.pdf (3.28 MB)

Development and utility of a SARS-CoV-2 pseudovirus assay for compound screening and antibody neutralization assays.

Download (3.28 MB)
journal contribution
posted on 2024-06-10, 10:37 authored by Aaron A Manu, Irene A Owusu, Fatima O Oyawoye, Sylvester Languon, Ibrahim Anna Barikisu, Sylvia Tawiah-Eshun, Osbourne Quaye, Kwaku Jacob Donkor, Lily Paemka, Gloria A Amegatcher, Prince MD Denyoh, Daniel Oduro-Mensah, Gordon A Awandare, Peter K Quashie
BACKGROUND: The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. METHODS: To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. RESULTS: We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. SIGNIFICANCE: This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.

Funding

Medical Research Council (Grant ID: MR/P028071/1, Grant title: GCRF-Crick African Network MR/P028071/1)

History

Usage metrics

    The Francis Crick Institute

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC