The Francis Crick Institute
1-s2.0-S0960982219315131-main (1).pdf (4.26 MB)

Delineating the rules for structural adaptation of membrane-associated proteins to evolutionary changes in membrane lipidome.

Download (4.26 MB)
journal contribution
posted on 2020-02-12, 14:57 authored by Maria Makarova, Maria Peter, Gabor Balogh, Attila Glatz, James I MacRae, Nestor Lopez Mora, Paula Booth, Eugene Makeyev, Laszlo Vigh, Snezhana Oliferenko
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomycesjaponicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.


Crick (Grant ID: 10002, Grant title: Oliferenko FC001002)