posted on 2020-10-19, 14:48authored byMarta Miralles, Herena Eixarch, Marcos Tejero, Carme Costa, Keiji Hirota, A Raul Castaño, Meritxell Puig, Brigitta Stockinger, Xavier Montalban, Assumpció Bosch, Carmen Espejo, Miguel Chillon
The role of the T helper (Th)17 pathway has been clearly demonstrated in the onset and progression of autoimmune diseases, where interleukin (IL)-23 is a key molecule in maintaining the response mediated by Th17 cells. As a consequence, recent strategies based on blocking the interaction between IL-23 and its receptor (IL-23R), for example the anti-p19 antibody tildrakizumab, have been developed to regulate the Th17 pathway from the initial stages of the disease. Here, a soluble (s)IL-23R cDNA was cloned in expression plasmids and viral vectors. The clinical efficacy of sIL-23R was evaluated in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis mice intravenously injected with a single dose of adeno-associated virus AAV8–sIL-23R vectors. Cytokine secretion was determined by multiplex assay, while histopathological analysis of the central nervous system was performed to study demyelination, inflammatory infiltration, and microglia and astroglia activation. We observed that administration of adeno-associated vector 8 encoding sIL-23R was associated with a significant disease improvement, including delay in the onset of the clinical signs; slower progress of the disease; interference with IL-23-mediated signal transducer and activator of transcription response by inhibiting of signal transducer and activator of transcription 3 phosphorylation; reduced demyelination and infiltration in the central nervous system; and lower astrocyte and microglia activation. Our results suggest that the use of vectors carrying sIL-23R to block the IL-23/IL-23R interaction may be a new therapeutic strategy for the treatment of multiple sclerosis.