The Francis Crick Institute
Browse
- No file added yet -

An improved method for measuring absolute metabolite concentrations in small biofluid or tissue samples

Download (1.44 MB)
journal contribution
posted on 2019-12-12, 17:32 authored by Tharindu Fernando, Annick Sawala, Andrew Bailey, Alex P Gould, Paul C Driscoll
The measurement of absolute metabolite concentrations in small samples remains a significant analytical challenge. This is particularly the case when the sample volume is only a few microliters or less and cannot be determined accurately via direct measurement. We previously developed volume determination with two standards (VDTS) as a method to address this challenge for biofluids. As a proof-of-principle, we applied VDTS to NMR spectra of polar metabolites in the hemolymph (blood) of the tiny yet powerful genetic model Drosophila melanogaster. This showed that VDTS calculation of absolute metabolite concentrations in fed versus starved Drosophila larvae is more accurate than methods utilizing normalization to total spectral signal. Here, we introduce paired VDTS (pVDTS), an improved VDTS method for biofluids and solid tissues that implements the statistical power of paired control and experimental replicates. pVDTS utilizes new equations that also include a correction for dilution errors introduced by the variable surface wetness of solid samples. We then show that metabolite concentrations in Drosophila larvae are more precisely determined and logically consistent using pVDTS than using the original VDTS method. The refined pVDTS workflow described in this study is applicable to a wide range of different tissues and biofluids.

History