emss-72183.pdf (3.13 MB)
Download fileActin cortex architecture regulates cell surface tension
journal contribution
posted on 2020-08-05, 17:14 authored by Priyamvada Chugh, Andrew G Clark, Matthew B Smith, Davide AD Cassani, Kai Dierkes, Anan Ragab, Philippe P Roux, Guillaume Charras, Guillaume Salbreux, Ewa K PaluchAnimal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.
History
Publisher DOI
Usage metrics
Keywords
Actin CytoskeletonActinsAdaptor Proteins, Signal TransducingCapZ Actin Capping ProteinCell CycleCell ShapeCofilin 1Computer SimulationForminsHeLa CellsHumansInterphaseMechanotransduction, CellularMitosisModels, BiologicalSurface TensionTransfectionHela CellsSalbreux FC00131706 Biological Sciences11 Medical and Health SciencesDevelopmental Biology