s41467-022-28470-x (1).pdf (5.89 MB)
Download file

A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution.

Download (5.89 MB)
journal contribution
posted on 16.02.2022, 12:28 authored by Michele Bortolomeazzi, Lucia Montorsi, Damjan Temelkovski, Mohamed Reda Keddar, Amelia Acha-Sagredo, Michael J Pitcher, Gianluca Basso, Luigi Laghi, Manuel Rodriguez-Justo, Jo Spencer, Francesca D Ciccarelli
Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at "SIMPLI [ https://github.com/ciccalab/SIMPLI ]".

History