The Francis Crick Institute
acschembio.1c00818 (1).pdf (4.69 MB)

4-deoxy-4-fluoro-GalNAz (4FGalNAz) is a metabolic chemical reporter of O-GlcNAc modifications, highlighting the notable substrate flexibility of O-GlcNAc transferase.

Download (4.69 MB)
journal contribution
posted on 2022-02-01, 14:26 authored by Emma G Jackson, Giuliano Cutolo, Bo Yang, Nageswari Yarravarapu, Mary WN Burns, Ganka Bineva-Todd, Chloë Roustan, James B Thoden, Halley M Lin-Jones, Toin H van Kuppevelt, Hazel M Holden, Benjamin Schumann, Jennifer J Kohler, Christina M Woo, Matthew R Pratt
Bio-orthogonal chemistries have revolutionized many fields. For example, metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain a bio-orthogonal functionality, such as azides or alkynes. MCRs are metabolically incorporated into glycoproteins by living systems, and bio-orthogonal reactions can be subsequently employed to install visualization and enrichment tags. Unfortunately, most MCRs are not selective for one class of glycosylation (e.g., N-linked vs O-linked), complicating the types of information that can be gleaned. We and others have successfully created MCRs that are selective for intracellular O-GlcNAc modification by altering the structure of the MCR and thus biasing it to certain metabolic pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do the same for the core GalNAc residue of mucin O-linked glycosylation. The most widely applied MCR for mucin O-linked glycosylation, GalNAz, can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz. This results in a mixture of cell-surface and O-GlcNAc labeling. We reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would lock the stereochemistry of this position in place, causing the MCR to be more selective. After synthesis, we found that 4FGalNAz labels a variety of proteins in mammalian cells and does not perturb endogenous glycosylation pathways unlike 4FGalNAc. However, through subsequent proteomic and biochemical characterization, we found that 4FGalNAz does not widely label cell-surface glycoproteins but instead is primarily a substrate for OGT. Although these results are somewhat unexpected, they once again highlight the large substrate flexibility of OGT, with interesting and important implications for intracellular protein modification by a potential range of abiotic and native monosaccharides.


Crick (Grant ID: 10749, Grant title: Schumann FC001749) Crick (Grant ID: 10015, Grant title: STP Structural Biology)