1-s2.0-S1097276516306657-main.pdf (3.65 MB)

A polar and nucleotide-dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling

Download (3.65 MB)
journal contribution
posted on 02.10.2020 by Martin RG Taylor, Mário Špírek, Chu Jian Ma, Raffaella Carzaniga, Tohru Takaki, Lucy M Collinson, Eric C Greene, Lumir Krejci, Simon J Boulton
Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5' end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5'→3' polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.

History

Licence

Exports