Köhler, Kerstin Sanchez-Pulido, Luis Höfer, Verena Marko, Anika Ponting, Chris P Snijders, Ambrosius P Feederle, Regina Schepers, Aloys Boos, Dominik The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7 Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)-interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes. Carrier Proteins;Cell Cycle Proteins;Computational Biology;Cyclin C;Cyclin-Dependent Kinase 8;Cyclin-Dependent Kinases;DNA Replication;DNA-Binding Proteins;HEK293 Cells;HeLa Cells;Humans;Mitosis;Protein Binding;Saccharomyces cerevisiae;Saccharomyces cerevisiae Proteins;Hela Cells;PRT;06 Biological Sciences;11 Medical and Health Sciences;07 Agricultural and Veterinary Sciences;Developmental Biology 2019-12-16
    https://crick.figshare.com/articles/journal_contribution/The_Cdk8_19-cyclin_C_transcription_regulator_functions_in_genome_replication_through_metazoan_Sld7/11371614